godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/GearConstraint.cpp

189 lines
5.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/GearConstraint.h>
#include <Jolt/Physics/Constraints/HingeConstraint.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(GearConstraintSettings)
{
JPH_ADD_BASE_CLASS(GearConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(GearConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(GearConstraintSettings, mHingeAxis1)
JPH_ADD_ATTRIBUTE(GearConstraintSettings, mHingeAxis2)
JPH_ADD_ATTRIBUTE(GearConstraintSettings, mRatio)
}
void GearConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mHingeAxis1);
inStream.Write(mHingeAxis2);
inStream.Write(mRatio);
}
void GearConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mHingeAxis1);
inStream.Read(mHingeAxis2);
inStream.Read(mRatio);
}
TwoBodyConstraint *GearConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new GearConstraint(inBody1, inBody2, *this);
}
GearConstraint::GearConstraint(Body &inBody1, Body &inBody2, const GearConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mLocalSpaceHingeAxis1(inSettings.mHingeAxis1),
mLocalSpaceHingeAxis2(inSettings.mHingeAxis2),
mRatio(inSettings.mRatio)
{
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
// If all properties were specified in world space, take them to local space now
mLocalSpaceHingeAxis1 = inBody1.GetInverseCenterOfMassTransform().Multiply3x3(mLocalSpaceHingeAxis1).Normalized();
mLocalSpaceHingeAxis2 = inBody2.GetInverseCenterOfMassTransform().Multiply3x3(mLocalSpaceHingeAxis2).Normalized();
}
}
void GearConstraint::CalculateConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
{
// Calculate world space normals
mWorldSpaceHingeAxis1 = inRotation1 * mLocalSpaceHingeAxis1;
mWorldSpaceHingeAxis2 = inRotation2 * mLocalSpaceHingeAxis2;
mGearConstraintPart.CalculateConstraintProperties(*mBody1, mWorldSpaceHingeAxis1, *mBody2, mWorldSpaceHingeAxis2, mRatio);
}
void GearConstraint::SetupVelocityConstraint(float inDeltaTime)
{
// Calculate constraint properties that are constant while bodies don't move
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateConstraintProperties(rotation1, rotation2);
}
void GearConstraint::ResetWarmStart()
{
mGearConstraintPart.Deactivate();
}
void GearConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
// Warm starting: Apply previous frame impulse
mGearConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
}
bool GearConstraint::SolveVelocityConstraint(float inDeltaTime)
{
return mGearConstraintPart.SolveVelocityConstraint(*mBody1, mWorldSpaceHingeAxis1, *mBody2, mWorldSpaceHingeAxis2, mRatio);
}
bool GearConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
if (mGear1Constraint == nullptr || mGear2Constraint == nullptr)
return false;
float gear1rot;
if (mGear1Constraint->GetSubType() == EConstraintSubType::Hinge)
{
gear1rot = StaticCast<HingeConstraint>(mGear1Constraint)->GetCurrentAngle();
}
else
{
JPH_ASSERT(false, "Unsupported");
return false;
}
float gear2rot;
if (mGear2Constraint->GetSubType() == EConstraintSubType::Hinge)
{
gear2rot = StaticCast<HingeConstraint>(mGear2Constraint)->GetCurrentAngle();
}
else
{
JPH_ASSERT(false, "Unsupported");
return false;
}
float error = CenterAngleAroundZero(fmod(gear1rot + mRatio * gear2rot, 2.0f * JPH_PI));
if (error == 0.0f)
return false;
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateConstraintProperties(rotation1, rotation2);
return mGearConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, error, inBaumgarte);
}
#ifdef JPH_DEBUG_RENDERER
void GearConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
// Draw constraint axis
inRenderer->DrawArrow(transform1.GetTranslation(), transform1 * mLocalSpaceHingeAxis1, Color::sGreen, 0.01f);
inRenderer->DrawArrow(transform2.GetTranslation(), transform2 * mLocalSpaceHingeAxis2, Color::sBlue, 0.01f);
}
#endif // JPH_DEBUG_RENDERER
void GearConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mGearConstraintPart.SaveState(inStream);
}
void GearConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mGearConstraintPart.RestoreState(inStream);
}
Ref<ConstraintSettings> GearConstraint::GetConstraintSettings() const
{
GearConstraintSettings *settings = new GearConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
settings->mRatio = mRatio;
return settings;
}
Mat44 GearConstraint::GetConstraintToBody1Matrix() const
{
Vec3 perp = mLocalSpaceHingeAxis1.GetNormalizedPerpendicular();
return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(perp, 0), Vec4(mLocalSpaceHingeAxis1.Cross(perp), 0), Vec4(0, 0, 0, 1));
}
Mat44 GearConstraint::GetConstraintToBody2Matrix() const
{
Vec3 perp = mLocalSpaceHingeAxis2.GetNormalizedPerpendicular();
return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(perp, 0), Vec4(mLocalSpaceHingeAxis2.Cross(perp), 0), Vec4(0, 0, 0, 1));
}
JPH_NAMESPACE_END