godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/DistanceConstraint.cpp

267 lines
9.3 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/DistanceConstraint.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
using namespace literals;
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(DistanceConstraintSettings)
{
JPH_ADD_BASE_CLASS(DistanceConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(DistanceConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(DistanceConstraintSettings, mPoint1)
JPH_ADD_ATTRIBUTE(DistanceConstraintSettings, mPoint2)
JPH_ADD_ATTRIBUTE(DistanceConstraintSettings, mMinDistance)
JPH_ADD_ATTRIBUTE(DistanceConstraintSettings, mMaxDistance)
JPH_ADD_ENUM_ATTRIBUTE_WITH_ALIAS(DistanceConstraintSettings, mLimitsSpringSettings.mMode, "mSpringMode")
JPH_ADD_ATTRIBUTE_WITH_ALIAS(DistanceConstraintSettings, mLimitsSpringSettings.mFrequency, "mFrequency") // Renaming attributes to stay compatible with old versions of the library
JPH_ADD_ATTRIBUTE_WITH_ALIAS(DistanceConstraintSettings, mLimitsSpringSettings.mDamping, "mDamping")
}
void DistanceConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mPoint1);
inStream.Write(mPoint2);
inStream.Write(mMinDistance);
inStream.Write(mMaxDistance);
mLimitsSpringSettings.SaveBinaryState(inStream);
}
void DistanceConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mPoint1);
inStream.Read(mPoint2);
inStream.Read(mMinDistance);
inStream.Read(mMaxDistance);
mLimitsSpringSettings.RestoreBinaryState(inStream);
}
TwoBodyConstraint *DistanceConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new DistanceConstraint(inBody1, inBody2, *this);
}
DistanceConstraint::DistanceConstraint(Body &inBody1, Body &inBody2, const DistanceConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mMinDistance(inSettings.mMinDistance),
mMaxDistance(inSettings.mMaxDistance)
{
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
// If all properties were specified in world space, take them to local space now
mLocalSpacePosition1 = Vec3(inBody1.GetInverseCenterOfMassTransform() * inSettings.mPoint1);
mLocalSpacePosition2 = Vec3(inBody2.GetInverseCenterOfMassTransform() * inSettings.mPoint2);
mWorldSpacePosition1 = inSettings.mPoint1;
mWorldSpacePosition2 = inSettings.mPoint2;
}
else
{
// If properties were specified in local space, we need to calculate world space positions
mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
mWorldSpacePosition1 = inBody1.GetCenterOfMassTransform() * inSettings.mPoint1;
mWorldSpacePosition2 = inBody2.GetCenterOfMassTransform() * inSettings.mPoint2;
}
// Store distance we want to keep between the world space points
float distance = Vec3(mWorldSpacePosition2 - mWorldSpacePosition1).Length();
float min_distance, max_distance;
if (mMinDistance < 0.0f && mMaxDistance < 0.0f)
{
min_distance = max_distance = distance;
}
else
{
min_distance = mMinDistance < 0.0f? min(distance, mMaxDistance) : mMinDistance;
max_distance = mMaxDistance < 0.0f? max(distance, mMinDistance) : mMaxDistance;
}
SetDistance(min_distance, max_distance);
// Most likely gravity is going to tear us apart (this is only used when the distance between the points = 0)
mWorldSpaceNormal = Vec3::sAxisY();
// Store spring settings
SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
}
void DistanceConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
{
if (mBody1->GetID() == inBodyID)
mLocalSpacePosition1 -= inDeltaCOM;
else if (mBody2->GetID() == inBodyID)
mLocalSpacePosition2 -= inDeltaCOM;
}
void DistanceConstraint::CalculateConstraintProperties(float inDeltaTime)
{
// Update world space positions (the bodies may have moved)
mWorldSpacePosition1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
mWorldSpacePosition2 = mBody2->GetCenterOfMassTransform() * mLocalSpacePosition2;
// Calculate world space normal
Vec3 delta = Vec3(mWorldSpacePosition2 - mWorldSpacePosition1);
float delta_len = delta.Length();
if (delta_len > 0.0f)
mWorldSpaceNormal = delta / delta_len;
// Calculate points relative to body
// r1 + u = (p1 - x1) + (p2 - p1) = p2 - x1
Vec3 r1_plus_u = Vec3(mWorldSpacePosition2 - mBody1->GetCenterOfMassPosition());
Vec3 r2 = Vec3(mWorldSpacePosition2 - mBody2->GetCenterOfMassPosition());
if (mMinDistance == mMaxDistance)
{
mAxisConstraint.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, mWorldSpaceNormal, 0.0f, delta_len - mMinDistance, mLimitsSpringSettings);
// Single distance, allow constraint forces in both directions
mMinLambda = -FLT_MAX;
mMaxLambda = FLT_MAX;
}
else if (delta_len <= mMinDistance)
{
mAxisConstraint.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, mWorldSpaceNormal, 0.0f, delta_len - mMinDistance, mLimitsSpringSettings);
// Allow constraint forces to make distance bigger only
mMinLambda = 0;
mMaxLambda = FLT_MAX;
}
else if (delta_len >= mMaxDistance)
{
mAxisConstraint.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, mWorldSpaceNormal, 0.0f, delta_len - mMaxDistance, mLimitsSpringSettings);
// Allow constraint forces to make distance smaller only
mMinLambda = -FLT_MAX;
mMaxLambda = 0;
}
else
mAxisConstraint.Deactivate();
}
void DistanceConstraint::SetupVelocityConstraint(float inDeltaTime)
{
CalculateConstraintProperties(inDeltaTime);
}
void DistanceConstraint::ResetWarmStart()
{
mAxisConstraint.Deactivate();
}
void DistanceConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
mAxisConstraint.WarmStart(*mBody1, *mBody2, mWorldSpaceNormal, inWarmStartImpulseRatio);
}
bool DistanceConstraint::SolveVelocityConstraint(float inDeltaTime)
{
if (mAxisConstraint.IsActive())
return mAxisConstraint.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceNormal, mMinLambda, mMaxLambda);
else
return false;
}
bool DistanceConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
if (mLimitsSpringSettings.mFrequency <= 0.0f) // When the spring is active, we don't need to solve the position constraint
{
float distance = Vec3(mWorldSpacePosition2 - mWorldSpacePosition1).Dot(mWorldSpaceNormal);
// Calculate position error
float position_error = 0.0f;
if (distance < mMinDistance)
position_error = distance - mMinDistance;
else if (distance > mMaxDistance)
position_error = distance - mMaxDistance;
if (position_error != 0.0f)
{
// Update constraint properties (bodies may have moved)
CalculateConstraintProperties(inDeltaTime);
return mAxisConstraint.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceNormal, position_error, inBaumgarte);
}
}
return false;
}
#ifdef JPH_DEBUG_RENDERER
void DistanceConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
// Draw constraint
Vec3 delta = Vec3(mWorldSpacePosition2 - mWorldSpacePosition1);
float len = delta.Length();
if (len < mMinDistance)
{
RVec3 real_end_pos = mWorldSpacePosition1 + (len > 0.0f? delta * mMinDistance / len : Vec3(0, len, 0));
inRenderer->DrawLine(mWorldSpacePosition1, mWorldSpacePosition2, Color::sGreen);
inRenderer->DrawLine(mWorldSpacePosition2, real_end_pos, Color::sYellow);
}
else if (len > mMaxDistance)
{
RVec3 real_end_pos = mWorldSpacePosition1 + (len > 0.0f? delta * mMaxDistance / len : Vec3(0, len, 0));
inRenderer->DrawLine(mWorldSpacePosition1, real_end_pos, Color::sGreen);
inRenderer->DrawLine(real_end_pos, mWorldSpacePosition2, Color::sRed);
}
else
inRenderer->DrawLine(mWorldSpacePosition1, mWorldSpacePosition2, Color::sGreen);
// Draw constraint end points
inRenderer->DrawMarker(mWorldSpacePosition1, Color::sWhite, 0.1f);
inRenderer->DrawMarker(mWorldSpacePosition2, Color::sWhite, 0.1f);
// Draw current length
inRenderer->DrawText3D(0.5_r * (mWorldSpacePosition1 + mWorldSpacePosition2), StringFormat("%.2f", (double)len));
}
#endif // JPH_DEBUG_RENDERER
void DistanceConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mAxisConstraint.SaveState(inStream);
inStream.Write(mWorldSpaceNormal); // When distance = 0, the normal is used from last frame so we need to store it
}
void DistanceConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mAxisConstraint.RestoreState(inStream);
inStream.Read(mWorldSpaceNormal);
}
Ref<ConstraintSettings> DistanceConstraint::GetConstraintSettings() const
{
DistanceConstraintSettings *settings = new DistanceConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mPoint1 = RVec3(mLocalSpacePosition1);
settings->mPoint2 = RVec3(mLocalSpacePosition2);
settings->mMinDistance = mMinDistance;
settings->mMaxDistance = mMaxDistance;
settings->mLimitsSpringSettings = mLimitsSpringSettings;
return settings;
}
JPH_NAMESPACE_END