522 lines
25 KiB
C++
522 lines
25 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Core/StaticArray.h>
|
|
#include <Jolt/Core/LockFreeHashMap.h>
|
|
#include <Jolt/Physics/EPhysicsUpdateError.h>
|
|
#include <Jolt/Physics/Body/BodyPair.h>
|
|
#include <Jolt/Physics/Collision/Shape/SubShapeIDPair.h>
|
|
#include <Jolt/Physics/Collision/ManifoldBetweenTwoFaces.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h>
|
|
#include <Jolt/Core/HashCombine.h>
|
|
#include <Jolt/Core/NonCopyable.h>
|
|
|
|
JPH_SUPPRESS_WARNINGS_STD_BEGIN
|
|
#include <atomic>
|
|
JPH_SUPPRESS_WARNINGS_STD_END
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
struct PhysicsSettings;
|
|
class PhysicsUpdateContext;
|
|
|
|
class JPH_EXPORT ContactConstraintManager : public NonCopyable
|
|
{
|
|
public:
|
|
JPH_OVERRIDE_NEW_DELETE
|
|
|
|
/// Constructor
|
|
explicit ContactConstraintManager(const PhysicsSettings &inPhysicsSettings);
|
|
~ContactConstraintManager();
|
|
|
|
/// Initialize the system.
|
|
/// @param inMaxBodyPairs Maximum amount of body pairs to process (anything else will fall through the world), this number should generally be much higher than the max amount of contact points as there will be lots of bodies close that are not actually touching
|
|
/// @param inMaxContactConstraints Maximum amount of contact constraints to process (anything else will fall through the world)
|
|
void Init(uint inMaxBodyPairs, uint inMaxContactConstraints);
|
|
|
|
/// Listener that is notified whenever a contact point between two bodies is added/updated/removed
|
|
void SetContactListener(ContactListener *inListener) { mContactListener = inListener; }
|
|
ContactListener * GetContactListener() const { return mContactListener; }
|
|
|
|
/// Callback function to combine the restitution or friction of two bodies
|
|
/// Note that when merging manifolds (when PhysicsSettings::mUseManifoldReduction is true) you will only get a callback for the merged manifold.
|
|
/// It is not possible in that case to get all sub shape ID pairs that were colliding, you'll get the first encountered pair.
|
|
using CombineFunction = float (*)(const Body &inBody1, const SubShapeID &inSubShapeID1, const Body &inBody2, const SubShapeID &inSubShapeID2);
|
|
|
|
/// Set the function that combines the friction of two bodies and returns it
|
|
/// Default method is the geometric mean: sqrt(friction1 * friction2).
|
|
void SetCombineFriction(CombineFunction inCombineFriction) { mCombineFriction = inCombineFriction; }
|
|
CombineFunction GetCombineFriction() const { return mCombineFriction; }
|
|
|
|
/// Set the function that combines the restitution of two bodies and returns it
|
|
/// Default method is max(restitution1, restitution1)
|
|
void SetCombineRestitution(CombineFunction inCombineRestitution) { mCombineRestitution = inCombineRestitution; }
|
|
CombineFunction GetCombineRestitution() const { return mCombineRestitution; }
|
|
|
|
/// Get the max number of contact constraints that are allowed
|
|
uint32 GetMaxConstraints() const { return mMaxConstraints; }
|
|
|
|
/// Check with the listener if inBody1 and inBody2 could collide, returns false if not
|
|
inline ValidateResult ValidateContactPoint(const Body &inBody1, const Body &inBody2, RVec3Arg inBaseOffset, const CollideShapeResult &inCollisionResult) const
|
|
{
|
|
if (mContactListener == nullptr)
|
|
return ValidateResult::AcceptAllContactsForThisBodyPair;
|
|
|
|
return mContactListener->OnContactValidate(inBody1, inBody2, inBaseOffset, inCollisionResult);
|
|
}
|
|
|
|
/// Sets up the constraint buffer. Should be called before starting collision detection.
|
|
void PrepareConstraintBuffer(PhysicsUpdateContext *inContext);
|
|
|
|
/// Max 4 contact points are needed for a stable manifold
|
|
static const int MaxContactPoints = 4;
|
|
|
|
/// Contacts are allocated in a lock free hash map
|
|
class ContactAllocator : public LFHMAllocatorContext
|
|
{
|
|
public:
|
|
using LFHMAllocatorContext::LFHMAllocatorContext;
|
|
|
|
uint mNumBodyPairs = 0; ///< Total number of body pairs added using this allocator
|
|
uint mNumManifolds = 0; ///< Total number of manifolds added using this allocator
|
|
EPhysicsUpdateError mErrors = EPhysicsUpdateError::None; ///< Errors reported on this allocator
|
|
};
|
|
|
|
/// Get a new allocator context for storing contacts. Note that you should call this once and then add multiple contacts using the context.
|
|
ContactAllocator GetContactAllocator() { return mCache[mCacheWriteIdx].GetContactAllocator(); }
|
|
|
|
/// Check if the contact points from the previous frame are reusable and if so copy them.
|
|
/// When the cache was usable and the pair has been handled: outPairHandled = true.
|
|
/// When a contact constraint was produced: outConstraintCreated = true.
|
|
void GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated);
|
|
|
|
/// Handle used to keep track of the current body pair
|
|
using BodyPairHandle = void *;
|
|
|
|
/// Create a handle for a colliding body pair so that contact constraints can be added between them.
|
|
/// Needs to be called once per body pair per frame before calling AddContactConstraint.
|
|
BodyPairHandle AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2);
|
|
|
|
/// Add a contact constraint for this frame.
|
|
///
|
|
/// @param ioContactAllocator The allocator that reserves memory for the contacts
|
|
/// @param inBodyPair The handle for the contact cache for this body pair
|
|
/// @param inBody1 The first body that is colliding
|
|
/// @param inBody2 The second body that is colliding
|
|
/// @param inManifold The manifold that describes the collision
|
|
/// @return true if a contact constraint was created (can be false in the case of a sensor)
|
|
///
|
|
/// This is using the approach described in 'Modeling and Solving Constraints' by Erin Catto presented at GDC 2009 (and later years with slight modifications).
|
|
/// We're using the formulas from slide 50 - 53 combined.
|
|
///
|
|
/// Euler velocity integration:
|
|
///
|
|
/// v1' = v1 + M^-1 P
|
|
///
|
|
/// Impulse:
|
|
///
|
|
/// P = J^T lambda
|
|
///
|
|
/// Constraint force:
|
|
///
|
|
/// lambda = -K^-1 J v1
|
|
///
|
|
/// Inverse effective mass:
|
|
///
|
|
/// K = J M^-1 J^T
|
|
///
|
|
/// Constraint equation (limits movement in 1 axis):
|
|
///
|
|
/// C = (p2 - p1) . n
|
|
///
|
|
/// Jacobian (for position constraint)
|
|
///
|
|
/// J = [-n, -r1 x n, n, r2 x n]
|
|
///
|
|
/// n = contact normal (pointing away from body 1).
|
|
/// p1, p2 = positions of collision on body 1 and 2.
|
|
/// r1, r2 = contact point relative to center of mass of body 1 and body 2 (r1 = p1 - x1, r2 = p2 - x2).
|
|
/// v1, v2 = (linear velocity, angular velocity): 6 vectors containing linear and angular velocity for body 1 and 2.
|
|
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].
|
|
bool AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPair, Body &inBody1, Body &inBody2, const ContactManifold &inManifold);
|
|
|
|
/// Finalizes the contact cache, the contact cache that was generated during the calls to AddContactConstraint in this update
|
|
/// will be used from now on to read from. After finalizing the contact cache, the contact removed callbacks will be called.
|
|
/// inExpectedNumBodyPairs / inExpectedNumManifolds are the amount of body pairs / manifolds found in the previous step and is
|
|
/// used to determine the amount of buckets the contact cache hash map will use in the next update.
|
|
void FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds);
|
|
|
|
/// Check if 2 bodies were in contact during the last simulation step. Since contacts are only detected between active bodies, at least one of the bodies must be active.
|
|
/// Uses the read collision cache to determine if 2 bodies are in contact.
|
|
bool WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const;
|
|
|
|
/// Get the number of contact constraints that were found
|
|
uint32 GetNumConstraints() const { return min<uint32>(mNumConstraints, mMaxConstraints); }
|
|
|
|
/// Sort contact constraints deterministically
|
|
void SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const;
|
|
|
|
/// Get the affected bodies for a given constraint
|
|
inline void GetAffectedBodies(uint32 inConstraintIdx, const Body *&outBody1, const Body *&outBody2) const
|
|
{
|
|
const ContactConstraint &constraint = mConstraints[inConstraintIdx];
|
|
outBody1 = constraint.mBody1;
|
|
outBody2 = constraint.mBody2;
|
|
}
|
|
|
|
/// Apply last frame's impulses as an initial guess for this frame's impulses
|
|
template <class MotionPropertiesCallback>
|
|
void WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, MotionPropertiesCallback &ioCallback);
|
|
|
|
/// Solve velocity constraints, when almost nothing changes this should only apply very small impulses
|
|
/// since we're warm starting with the total impulse applied in the last frame above.
|
|
///
|
|
/// Friction wise we're using the Coulomb friction model which says that:
|
|
///
|
|
/// |F_T| <= mu |F_N|
|
|
///
|
|
/// Where F_T is the tangential force, F_N is the normal force and mu is the friction coefficient
|
|
///
|
|
/// In impulse terms this becomes:
|
|
///
|
|
/// |lambda_T| <= mu |lambda_N|
|
|
///
|
|
/// And the constraint that needs to be applied is exactly the same as a non penetration constraint
|
|
/// except that we use a tangent instead of a normal. The tangent should point in the direction of the
|
|
/// tangential velocity of the point:
|
|
///
|
|
/// J = [-T, -r1 x T, T, r2 x T]
|
|
///
|
|
/// Where T is the tangent.
|
|
///
|
|
/// See slide 42 and 43.
|
|
///
|
|
/// Restitution is implemented as a velocity bias (see slide 41):
|
|
///
|
|
/// b = e v_n^-
|
|
///
|
|
/// e = the restitution coefficient, v_n^- is the normal velocity prior to the collision
|
|
///
|
|
/// Restitution is only applied when v_n^- is large enough and the points are moving towards collision
|
|
bool SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd);
|
|
|
|
/// Save back the lambdas to the contact cache for the next warm start
|
|
void StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const;
|
|
|
|
/// Solve position constraints.
|
|
/// This is using the approach described in 'Modeling and Solving Constraints' by Erin Catto presented at GDC 2007.
|
|
/// On slide 78 it is suggested to split up the Baumgarte stabilization for positional drift so that it does not
|
|
/// actually add to the momentum. We combine an Euler velocity integrate + a position integrate and then discard the velocity
|
|
/// change.
|
|
///
|
|
/// Constraint force:
|
|
///
|
|
/// lambda = -K^-1 b
|
|
///
|
|
/// Baumgarte stabilization:
|
|
///
|
|
/// b = beta / dt C
|
|
///
|
|
/// beta = baumgarte stabilization factor.
|
|
/// dt = delta time.
|
|
bool SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd);
|
|
|
|
/// Recycle the constraint buffer. Should be called between collision simulation steps.
|
|
void RecycleConstraintBuffer();
|
|
|
|
/// Terminate the constraint buffer. Should be called after simulation ends.
|
|
void FinishConstraintBuffer();
|
|
|
|
/// Called by continuous collision detection to notify the contact listener that a contact was added
|
|
/// @param ioContactAllocator The allocator that reserves memory for the contacts
|
|
/// @param inBody1 The first body that is colliding
|
|
/// @param inBody2 The second body that is colliding
|
|
/// @param inManifold The manifold that describes the collision
|
|
/// @param outSettings The calculated contact settings (may be overridden by the contact listener)
|
|
void OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings);
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
// Drawing properties
|
|
static bool sDrawContactPoint;
|
|
static bool sDrawSupportingFaces;
|
|
static bool sDrawContactPointReduction;
|
|
static bool sDrawContactManifolds;
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
/// Saving state for replay
|
|
void SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const;
|
|
|
|
/// Restoring state for replay. Returns false when failed.
|
|
bool RestoreState(StateRecorder &inStream, const StateRecorderFilter *inFilter);
|
|
|
|
private:
|
|
/// Local space contact point, used for caching impulses
|
|
class CachedContactPoint
|
|
{
|
|
public:
|
|
/// Saving / restoring state for replay
|
|
void SaveState(StateRecorder &inStream) const;
|
|
void RestoreState(StateRecorder &inStream);
|
|
|
|
/// Local space positions on body 1 and 2.
|
|
/// Note: these values are read through sLoadFloat3Unsafe.
|
|
Float3 mPosition1;
|
|
Float3 mPosition2;
|
|
|
|
/// Total applied impulse during the last update that it was used
|
|
float mNonPenetrationLambda;
|
|
Vector<2> mFrictionLambda;
|
|
};
|
|
|
|
static_assert(sizeof(CachedContactPoint) == 36, "Unexpected size");
|
|
static_assert(alignof(CachedContactPoint) == 4, "Assuming 4 byte aligned");
|
|
|
|
/// A single cached manifold
|
|
class CachedManifold
|
|
{
|
|
public:
|
|
/// Calculate size in bytes needed beyond the size of the class to store inNumContactPoints
|
|
static int sGetRequiredExtraSize(int inNumContactPoints) { return max(0, inNumContactPoints - 1) * sizeof(CachedContactPoint); }
|
|
|
|
/// Calculate total class size needed for storing inNumContactPoints
|
|
static int sGetRequiredTotalSize(int inNumContactPoints) { return sizeof(CachedManifold) + sGetRequiredExtraSize(inNumContactPoints); }
|
|
|
|
/// Saving / restoring state for replay
|
|
void SaveState(StateRecorder &inStream) const;
|
|
void RestoreState(StateRecorder &inStream);
|
|
|
|
/// Handle to next cached contact points in ManifoldCache::mCachedManifolds for the same body pair
|
|
uint32 mNextWithSameBodyPair;
|
|
|
|
/// Contact normal in the space of 2.
|
|
/// Note: this value is read through sLoadFloat3Unsafe.
|
|
Float3 mContactNormal;
|
|
|
|
/// Flags for this cached manifold
|
|
enum class EFlags : uint16
|
|
{
|
|
ContactPersisted = 1, ///< If this cache entry was reused in the next simulation update
|
|
CCDContact = 2 ///< This is a cached manifold reported by continuous collision detection and was only used to create a contact callback
|
|
};
|
|
|
|
/// @see EFlags
|
|
mutable atomic<uint16> mFlags { 0 };
|
|
|
|
/// Number of contact points in the array below
|
|
uint16 mNumContactPoints;
|
|
|
|
/// Contact points that this manifold consists of
|
|
CachedContactPoint mContactPoints[1];
|
|
};
|
|
|
|
static_assert(sizeof(CachedManifold) == 56, "This structure is expect to not contain any waste due to alignment");
|
|
static_assert(alignof(CachedManifold) == 4, "Assuming 4 byte aligned");
|
|
|
|
/// Define a map that maps SubShapeIDPair -> manifold
|
|
using ManifoldMap = LockFreeHashMap<SubShapeIDPair, CachedManifold>;
|
|
using MKeyValue = ManifoldMap::KeyValue;
|
|
using MKVAndCreated = std::pair<MKeyValue *, bool>;
|
|
|
|
/// Start of list of contact points for a particular pair of bodies
|
|
class CachedBodyPair
|
|
{
|
|
public:
|
|
/// Saving / restoring state for replay
|
|
void SaveState(StateRecorder &inStream) const;
|
|
void RestoreState(StateRecorder &inStream);
|
|
|
|
/// Local space position difference from Body A to Body B.
|
|
/// Note: this value is read through sLoadFloat3Unsafe
|
|
Float3 mDeltaPosition;
|
|
|
|
/// Local space rotation difference from Body A to Body B, fourth component of quaternion is not stored but is guaranteed >= 0.
|
|
/// Note: this value is read through sLoadFloat3Unsafe
|
|
Float3 mDeltaRotation;
|
|
|
|
/// Handle to first manifold in ManifoldCache::mCachedManifolds
|
|
uint32 mFirstCachedManifold;
|
|
};
|
|
|
|
static_assert(sizeof(CachedBodyPair) == 28, "Unexpected size");
|
|
static_assert(alignof(CachedBodyPair) == 4, "Assuming 4 byte aligned");
|
|
|
|
/// Define a map that maps BodyPair -> CachedBodyPair
|
|
using BodyPairMap = LockFreeHashMap<BodyPair, CachedBodyPair>;
|
|
using BPKeyValue = BodyPairMap::KeyValue;
|
|
|
|
/// Holds all caches that are needed to quickly find cached body pairs / manifolds
|
|
class ManifoldCache
|
|
{
|
|
public:
|
|
/// Initialize the cache
|
|
void Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize);
|
|
|
|
/// Reset all entries from the cache
|
|
void Clear();
|
|
|
|
/// Prepare cache before creating new contacts.
|
|
/// inExpectedNumBodyPairs / inExpectedNumManifolds are the amount of body pairs / manifolds found in the previous step and is used to determine the amount of buckets the contact cache hash map will use.
|
|
void Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds);
|
|
|
|
/// Get a new allocator context for storing contacts. Note that you should call this once and then add multiple contacts using the context.
|
|
ContactAllocator GetContactAllocator() { return ContactAllocator(mAllocator, cAllocatorBlockSize); }
|
|
|
|
/// Find / create cached entry for SubShapeIDPair -> CachedManifold
|
|
const MKeyValue * Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const;
|
|
MKeyValue * Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints);
|
|
MKVAndCreated FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints);
|
|
uint32 ToHandle(const MKeyValue *inKeyValue) const;
|
|
const MKeyValue * FromHandle(uint32 inHandle) const;
|
|
|
|
/// Find / create entry for BodyPair -> CachedBodyPair
|
|
const BPKeyValue * Find(const BodyPair &inKey, uint64 inKeyHash) const;
|
|
BPKeyValue * Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash);
|
|
void GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const;
|
|
void GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const;
|
|
void GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const;
|
|
void ContactPointRemovedCallbacks(ContactListener *inListener);
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
/// Get the amount of manifolds in the cache
|
|
uint GetNumManifolds() const { return mCachedManifolds.GetNumKeyValues(); }
|
|
|
|
/// Get the amount of body pairs in the cache
|
|
uint GetNumBodyPairs() const { return mCachedBodyPairs.GetNumKeyValues(); }
|
|
|
|
/// Before a cache is finalized you can only do Create(), after only Find() or Clear()
|
|
void Finalize();
|
|
#endif
|
|
|
|
/// Saving / restoring state for replay
|
|
void SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const;
|
|
bool RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream, const StateRecorderFilter *inFilter);
|
|
|
|
private:
|
|
/// Block size used when allocating new blocks in the contact cache
|
|
static constexpr uint32 cAllocatorBlockSize = 4096;
|
|
|
|
/// Allocator used by both mCachedManifolds and mCachedBodyPairs, this makes it more likely that a body pair and its manifolds are close in memory
|
|
LFHMAllocator mAllocator;
|
|
|
|
/// Simple hash map for SubShapeIDPair -> CachedManifold
|
|
ManifoldMap mCachedManifolds { mAllocator };
|
|
|
|
/// Simple hash map for BodyPair -> CachedBodyPair
|
|
BodyPairMap mCachedBodyPairs { mAllocator };
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
bool mIsFinalized = false; ///< Marks if this buffer is complete
|
|
#endif
|
|
};
|
|
|
|
ManifoldCache mCache[2]; ///< We have one cache to read from and one to write to
|
|
int mCacheWriteIdx = 0; ///< Which cache we're currently writing to
|
|
|
|
/// World space contact point, used for solving penetrations
|
|
class WorldContactPoint
|
|
{
|
|
public:
|
|
/// Calculate constraint properties below
|
|
void CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal);
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE void TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, float inGravityDeltaTimeDotNormal, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution);
|
|
|
|
/// The constraint parts
|
|
AxisConstraintPart mNonPenetrationConstraint;
|
|
AxisConstraintPart mFrictionConstraint1;
|
|
AxisConstraintPart mFrictionConstraint2;
|
|
|
|
/// Contact cache
|
|
CachedContactPoint * mContactPoint;
|
|
};
|
|
|
|
using WorldContactPoints = StaticArray<WorldContactPoint, MaxContactPoints>;
|
|
|
|
/// Contact constraint class, used for solving penetrations
|
|
class ContactConstraint
|
|
{
|
|
public:
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
/// Draw the state of the contact constraint
|
|
void Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const;
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
/// Convert the world space normal to a Vec3
|
|
JPH_INLINE Vec3 GetWorldSpaceNormal() const
|
|
{
|
|
return Vec3::sLoadFloat3Unsafe(mWorldSpaceNormal);
|
|
}
|
|
|
|
/// Get the tangents for this contact constraint
|
|
JPH_INLINE void GetTangents(Vec3 &outTangent1, Vec3 &outTangent2) const
|
|
{
|
|
Vec3 ws_normal = GetWorldSpaceNormal();
|
|
outTangent1 = ws_normal.GetNormalizedPerpendicular();
|
|
outTangent2 = ws_normal.Cross(outTangent1);
|
|
}
|
|
|
|
Body * mBody1;
|
|
Body * mBody2;
|
|
uint64 mSortKey;
|
|
Float3 mWorldSpaceNormal;
|
|
float mCombinedFriction;
|
|
float mInvMass1;
|
|
float mInvInertiaScale1;
|
|
float mInvMass2;
|
|
float mInvInertiaScale2;
|
|
WorldContactPoints mContactPoints;
|
|
};
|
|
|
|
public:
|
|
/// The maximum value that can be passed to Init for inMaxContactConstraints. Note you should really use a lower value, using this value will cost a lot of memory!
|
|
static constexpr uint cMaxContactConstraintsLimit = ~uint(0) / sizeof(ContactConstraint);
|
|
|
|
/// The maximum value that can be passed to Init for inMaxBodyPairs. Note you should really use a lower value, using this value will cost a lot of memory!
|
|
static constexpr uint cMaxBodyPairsLimit = ~uint(0) / sizeof(BodyPairMap::KeyValue);
|
|
|
|
private:
|
|
/// Internal helper function to calculate the friction and non-penetration constraint properties. Templated to the motion type to reduce the amount of branches and calculations.
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE void TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2);
|
|
|
|
/// Internal helper function to calculate the friction and non-penetration constraint properties.
|
|
inline void CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2);
|
|
|
|
/// Internal helper function to add a contact constraint. Templated to the motion type to reduce the amount of branches and calculations.
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
bool TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold);
|
|
|
|
/// Internal helper function to warm start contact constraint. Templated to the motion type to reduce the amount of branches and calculations.
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE static void sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio);
|
|
|
|
/// Internal helper function to solve a single contact constraint. Templated to the motion type to reduce the amount of branches and calculations.
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE static bool sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2);
|
|
|
|
/// The main physics settings instance
|
|
const PhysicsSettings & mPhysicsSettings;
|
|
|
|
/// Listener that is notified whenever a contact point between two bodies is added/updated/removed
|
|
ContactListener * mContactListener = nullptr;
|
|
|
|
/// Functions that are used to combine friction and restitution of 2 bodies
|
|
CombineFunction mCombineFriction = [](const Body &inBody1, const SubShapeID &, const Body &inBody2, const SubShapeID &) { return sqrt(inBody1.GetFriction() * inBody2.GetFriction()); };
|
|
CombineFunction mCombineRestitution = [](const Body &inBody1, const SubShapeID &, const Body &inBody2, const SubShapeID &) { return max(inBody1.GetRestitution(), inBody2.GetRestitution()); };
|
|
|
|
/// The constraints that were added this frame
|
|
ContactConstraint * mConstraints = nullptr;
|
|
uint32 mMaxConstraints = 0;
|
|
atomic<uint32> mNumConstraints { 0 };
|
|
|
|
/// Context used for this physics update
|
|
PhysicsUpdateContext * mUpdateContext;
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|