1793 lines
70 KiB
C++
1793 lines
70 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Constraints/ContactConstraintManager.h>
|
|
#include <Jolt/Physics/Constraints/CalculateSolverSteps.h>
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/PhysicsUpdateContext.h>
|
|
#include <Jolt/Physics/PhysicsSettings.h>
|
|
#include <Jolt/Physics/PhysicsSystem.h>
|
|
#include <Jolt/Physics/IslandBuilder.h>
|
|
#include <Jolt/Physics/DeterminismLog.h>
|
|
#include <Jolt/Core/TempAllocator.h>
|
|
#include <Jolt/Core/QuickSort.h>
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
#include <Jolt/Renderer/DebugRenderer.h>
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
using namespace literals;
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
bool ContactConstraintManager::sDrawContactPoint = false;
|
|
bool ContactConstraintManager::sDrawSupportingFaces = false;
|
|
bool ContactConstraintManager::sDrawContactPointReduction = false;
|
|
bool ContactConstraintManager::sDrawContactManifolds = false;
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
//#define JPH_MANIFOLD_CACHE_DEBUG
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::WorldContactPoint
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ContactConstraintManager::WorldContactPoint::CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal)
|
|
{
|
|
// Calculate collision points relative to body
|
|
RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
|
|
Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
|
|
Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
|
|
|
|
mNonPenetrationConstraint.CalculateConstraintPropertiesWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, r1, inBody2, inInvMass2, inInvInertiaScale2, r2, inWorldSpaceNormal);
|
|
}
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE void ContactConstraintManager::WorldContactPoint::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, float inGravityDeltaTimeDotNormal, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution)
|
|
{
|
|
JPH_DET_LOG("TemplatedCalculateFrictionAndNonPenetrationConstraintProperties: p1: " << inWorldSpacePosition1 << " p2: " << inWorldSpacePosition2
|
|
<< " normal: " << inWorldSpaceNormal << " tangent1: " << inWorldSpaceTangent1 << " tangent2: " << inWorldSpaceTangent2
|
|
<< " restitution: " << inSettings.mCombinedRestitution << " friction: " << inSettings.mCombinedFriction << " minv: " << inMinVelocityForRestitution
|
|
<< " surface_vel: " << inSettings.mRelativeLinearSurfaceVelocity << " surface_ang: " << inSettings.mRelativeAngularSurfaceVelocity);
|
|
|
|
// Calculate collision points relative to body
|
|
RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
|
|
Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
|
|
Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
|
|
|
|
// The gravity is applied in the beginning of the time step. If we get here, there was a collision
|
|
// at the beginning of the time step, so we've applied too much gravity. This means that our
|
|
// calculated restitution can be too high, so when we apply restitution, we cancel the added
|
|
// velocity due to gravity.
|
|
float gravity_dt_dot_normal;
|
|
|
|
// Calculate velocity of collision points
|
|
Vec3 relative_velocity;
|
|
if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
|
|
relative_velocity = mp2->GetPointVelocityCOM(r2) - mp1->GetPointVelocityCOM(r1);
|
|
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * (mp2->GetGravityFactor() - mp1->GetGravityFactor());
|
|
}
|
|
else if constexpr (Type1 != EMotionType::Static)
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
relative_velocity = -mp1->GetPointVelocityCOM(r1);
|
|
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp1->GetGravityFactor();
|
|
}
|
|
else if constexpr (Type2 != EMotionType::Static)
|
|
{
|
|
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
|
|
relative_velocity = mp2->GetPointVelocityCOM(r2);
|
|
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp2->GetGravityFactor();
|
|
}
|
|
else
|
|
{
|
|
JPH_ASSERT(false); // Static vs static makes no sense
|
|
relative_velocity = Vec3::sZero();
|
|
gravity_dt_dot_normal = 0.0f;
|
|
}
|
|
float normal_velocity = relative_velocity.Dot(inWorldSpaceNormal);
|
|
|
|
// How much the shapes are penetrating (> 0 if penetrating, < 0 if separated)
|
|
float penetration = Vec3(inWorldSpacePosition1 - inWorldSpacePosition2).Dot(inWorldSpaceNormal);
|
|
|
|
// If there is no penetration, this is a speculative contact and we will apply a bias to the contact constraint
|
|
// so that the constraint becomes relative_velocity . contact normal > -penetration / delta_time
|
|
// instead of relative_velocity . contact normal > 0
|
|
// See: GDC 2013: "Physics for Game Programmers; Continuous Collision" - Erin Catto
|
|
float speculative_contact_velocity_bias = max(0.0f, -penetration / inDeltaTime);
|
|
|
|
// Determine if the velocity is big enough for restitution
|
|
float normal_velocity_bias;
|
|
if (inSettings.mCombinedRestitution > 0.0f && normal_velocity < -inMinVelocityForRestitution)
|
|
{
|
|
// We have a velocity that is big enough for restitution. This is where speculative contacts don't work
|
|
// great as we have to decide now if we're going to apply the restitution or not. If the relative
|
|
// velocity is big enough for a hit, we apply the restitution (in the end, due to other constraints,
|
|
// the objects may actually not collide and we will have applied restitution incorrectly). Another
|
|
// artifact that occurs because of this approximation is that the object will bounce from its current
|
|
// position rather than from a position where it is touching the other object. This causes the object
|
|
// to appear to move faster for 1 frame (the opposite of time stealing).
|
|
if (normal_velocity < -speculative_contact_velocity_bias)
|
|
normal_velocity_bias = inSettings.mCombinedRestitution * (normal_velocity - gravity_dt_dot_normal);
|
|
else
|
|
// In this case we have predicted that we don't hit the other object, but if we do (due to other constraints changing velocities)
|
|
// the speculative contact will prevent penetration but will not apply restitution leading to another artifact.
|
|
normal_velocity_bias = speculative_contact_velocity_bias;
|
|
}
|
|
else
|
|
{
|
|
// No restitution. We can safely apply our contact velocity bias.
|
|
normal_velocity_bias = speculative_contact_velocity_bias;
|
|
}
|
|
|
|
mNonPenetrationConstraint.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceNormal, normal_velocity_bias);
|
|
|
|
// Calculate friction part
|
|
if (inSettings.mCombinedFriction > 0.0f)
|
|
{
|
|
// Get surface velocity relative to tangents
|
|
Vec3 ws_surface_velocity = inSettings.mRelativeLinearSurfaceVelocity + inSettings.mRelativeAngularSurfaceVelocity.Cross(r1);
|
|
float surface_velocity1 = inWorldSpaceTangent1.Dot(ws_surface_velocity);
|
|
float surface_velocity2 = inWorldSpaceTangent2.Dot(ws_surface_velocity);
|
|
|
|
// Implement friction as 2 AxisConstraintParts
|
|
mFrictionConstraint1.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent1, surface_velocity1);
|
|
mFrictionConstraint2.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent2, surface_velocity2);
|
|
}
|
|
else
|
|
{
|
|
// Turn off friction constraint
|
|
mFrictionConstraint1.Deactivate();
|
|
mFrictionConstraint2.Deactivate();
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::ContactConstraint
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
void ContactConstraintManager::ContactConstraint::Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const
|
|
{
|
|
if (mContactPoints.empty())
|
|
return;
|
|
|
|
// Get body transforms
|
|
RMat44 transform_body1 = mBody1->GetCenterOfMassTransform();
|
|
RMat44 transform_body2 = mBody2->GetCenterOfMassTransform();
|
|
|
|
RVec3 prev_point = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints.back().mContactPoint->mPosition1);
|
|
for (const WorldContactPoint &wcp : mContactPoints)
|
|
{
|
|
// Test if any lambda from the previous frame was transferred
|
|
float radius = wcp.mNonPenetrationConstraint.GetTotalLambda() == 0.0f
|
|
&& wcp.mFrictionConstraint1.GetTotalLambda() == 0.0f
|
|
&& wcp.mFrictionConstraint2.GetTotalLambda() == 0.0f? 0.1f : 0.2f;
|
|
|
|
RVec3 next_point = transform_body1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
|
|
inRenderer->DrawMarker(next_point, Color::sCyan, radius);
|
|
inRenderer->DrawMarker(transform_body2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2), Color::sPurple, radius);
|
|
|
|
// Draw edge
|
|
inRenderer->DrawArrow(prev_point, next_point, inManifoldColor, 0.05f);
|
|
prev_point = next_point;
|
|
}
|
|
|
|
// Draw normal
|
|
RVec3 wp = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints[0].mContactPoint->mPosition1);
|
|
inRenderer->DrawArrow(wp, wp + GetWorldSpaceNormal(), Color::sRed, 0.05f);
|
|
|
|
// Get tangents
|
|
Vec3 t1, t2;
|
|
GetTangents(t1, t2);
|
|
|
|
// Draw tangents
|
|
inRenderer->DrawLine(wp, wp + t1, Color::sGreen);
|
|
inRenderer->DrawLine(wp, wp + t2, Color::sBlue);
|
|
}
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::CachedContactPoint
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ContactConstraintManager::CachedContactPoint::SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mPosition1);
|
|
inStream.Write(mPosition2);
|
|
inStream.Write(mNonPenetrationLambda);
|
|
inStream.Write(mFrictionLambda);
|
|
}
|
|
|
|
void ContactConstraintManager::CachedContactPoint::RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mPosition1);
|
|
inStream.Read(mPosition2);
|
|
inStream.Read(mNonPenetrationLambda);
|
|
inStream.Read(mFrictionLambda);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::CachedManifold
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ContactConstraintManager::CachedManifold::SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mContactNormal);
|
|
}
|
|
|
|
void ContactConstraintManager::CachedManifold::RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mContactNormal);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::CachedBodyPair
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ContactConstraintManager::CachedBodyPair::SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mDeltaPosition);
|
|
inStream.Write(mDeltaRotation);
|
|
}
|
|
|
|
void ContactConstraintManager::CachedBodyPair::RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mDeltaPosition);
|
|
inStream.Read(mDeltaRotation);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager::ManifoldCache
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ContactConstraintManager::ManifoldCache::Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize)
|
|
{
|
|
uint max_body_pairs = min(inMaxBodyPairs, cMaxBodyPairsLimit);
|
|
JPH_ASSERT(max_body_pairs == inMaxBodyPairs, "Cannot support this many body pairs!");
|
|
JPH_ASSERT(inMaxContactConstraints <= cMaxContactConstraintsLimit); // Should have been enforced by caller
|
|
|
|
mAllocator.Init(uint(min(uint64(max_body_pairs) * sizeof(BodyPairMap::KeyValue) + inCachedManifoldsSize, uint64(~uint(0)))));
|
|
|
|
mCachedManifolds.Init(GetNextPowerOf2(inMaxContactConstraints));
|
|
mCachedBodyPairs.Init(GetNextPowerOf2(max_body_pairs));
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::Clear()
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
mCachedManifolds.Clear();
|
|
mCachedBodyPairs.Clear();
|
|
mAllocator.Clear();
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
// Mark as incomplete
|
|
mIsFinalized = false;
|
|
#endif
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
|
|
{
|
|
// Minimum amount of buckets to use in the hash map
|
|
constexpr uint32 cMinBuckets = 1024;
|
|
|
|
// Use the next higher power of 2 of amount of objects in the cache from last frame to determine the amount of buckets in this frame
|
|
mCachedManifolds.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumManifolds)), mCachedManifolds.GetMaxBuckets()));
|
|
mCachedBodyPairs.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumBodyPairs)), mCachedBodyPairs.GetMaxBuckets()));
|
|
}
|
|
|
|
const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
return mCachedManifolds.Find(inKey, inKeyHash);
|
|
}
|
|
|
|
ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
|
|
{
|
|
JPH_ASSERT(!mIsFinalized);
|
|
MKeyValue *kv = mCachedManifolds.Create(ioContactAllocator, inKey, inKeyHash, CachedManifold::sGetRequiredExtraSize(inNumContactPoints));
|
|
if (kv == nullptr)
|
|
{
|
|
ioContactAllocator.mErrors |= EPhysicsUpdateError::ManifoldCacheFull;
|
|
return nullptr;
|
|
}
|
|
kv->GetValue().mNumContactPoints = uint16(inNumContactPoints);
|
|
++ioContactAllocator.mNumManifolds;
|
|
return kv;
|
|
}
|
|
|
|
ContactConstraintManager::MKVAndCreated ContactConstraintManager::ManifoldCache::FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
|
|
{
|
|
MKeyValue *kv = const_cast<MKeyValue *>(mCachedManifolds.Find(inKey, inKeyHash));
|
|
if (kv != nullptr)
|
|
return { kv, false };
|
|
|
|
return { Create(ioContactAllocator, inKey, inKeyHash, inNumContactPoints), true };
|
|
}
|
|
|
|
uint32 ContactConstraintManager::ManifoldCache::ToHandle(const MKeyValue *inKeyValue) const
|
|
{
|
|
JPH_ASSERT(!mIsFinalized);
|
|
return mCachedManifolds.ToHandle(inKeyValue);
|
|
}
|
|
|
|
const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::FromHandle(uint32 inHandle) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
return mCachedManifolds.FromHandle(inHandle);
|
|
}
|
|
|
|
const ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Find(const BodyPair &inKey, uint64 inKeyHash) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
return mCachedBodyPairs.Find(inKey, inKeyHash);
|
|
}
|
|
|
|
ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash)
|
|
{
|
|
JPH_ASSERT(!mIsFinalized);
|
|
BPKeyValue *kv = mCachedBodyPairs.Create(ioContactAllocator, inKey, inKeyHash, 0);
|
|
if (kv == nullptr)
|
|
{
|
|
ioContactAllocator.mErrors |= EPhysicsUpdateError::BodyPairCacheFull;
|
|
return nullptr;
|
|
}
|
|
++ioContactAllocator.mNumBodyPairs;
|
|
return kv;
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
mCachedBodyPairs.GetAllKeyValues(outAll);
|
|
|
|
// Sort by key
|
|
QuickSort(outAll.begin(), outAll.end(), [](const BPKeyValue *inLHS, const BPKeyValue *inRHS) {
|
|
return inLHS->GetKey() < inRHS->GetKey();
|
|
});
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
|
|
// Iterate through the attached manifolds
|
|
for (uint32 handle = inBodyPair.mFirstCachedManifold; handle != ManifoldMap::cInvalidHandle; handle = FromHandle(handle)->GetValue().mNextWithSameBodyPair)
|
|
{
|
|
const MKeyValue *kv = mCachedManifolds.FromHandle(handle);
|
|
outAll.push_back(kv);
|
|
}
|
|
|
|
// Sort by key
|
|
QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
|
|
return inLHS->GetKey() < inRHS->GetKey();
|
|
});
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const
|
|
{
|
|
mCachedManifolds.GetAllKeyValues(outAll);
|
|
|
|
for (int i = (int)outAll.size() - 1; i >= 0; --i)
|
|
if ((outAll[i]->GetValue().mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0)
|
|
{
|
|
outAll[i] = outAll.back();
|
|
outAll.pop_back();
|
|
}
|
|
|
|
// Sort by key
|
|
QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
|
|
return inLHS->GetKey() < inRHS->GetKey();
|
|
});
|
|
}
|
|
|
|
void ContactConstraintManager::ManifoldCache::ContactPointRemovedCallbacks(ContactListener *inListener)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
for (MKeyValue &kv : mCachedManifolds)
|
|
if ((kv.GetValue().mFlags & uint16(CachedManifold::EFlags::ContactPersisted)) == 0)
|
|
inListener->OnContactRemoved(kv.GetKey());
|
|
}
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
|
|
void ContactConstraintManager::ManifoldCache::Finalize()
|
|
{
|
|
mIsFinalized = true;
|
|
|
|
#ifdef JPH_MANIFOLD_CACHE_DEBUG
|
|
Trace("ManifoldMap:");
|
|
mCachedManifolds.TraceStats();
|
|
Trace("BodyPairMap:");
|
|
mCachedBodyPairs.TraceStats();
|
|
#endif // JPH_MANIFOLD_CACHE_DEBUG
|
|
}
|
|
|
|
#endif
|
|
|
|
void ContactConstraintManager::ManifoldCache::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
|
|
{
|
|
JPH_ASSERT(mIsFinalized);
|
|
|
|
// Get contents of cache
|
|
Array<const BPKeyValue *> all_bp;
|
|
GetAllBodyPairsSorted(all_bp);
|
|
|
|
// Determine which ones to save
|
|
Array<const BPKeyValue *> selected_bp;
|
|
if (inFilter == nullptr)
|
|
selected_bp = std::move(all_bp);
|
|
else
|
|
{
|
|
selected_bp.reserve(all_bp.size());
|
|
for (const BPKeyValue *bp_kv : all_bp)
|
|
if (inFilter->ShouldSaveContact(bp_kv->GetKey().mBodyA, bp_kv->GetKey().mBodyB))
|
|
selected_bp.push_back(bp_kv);
|
|
}
|
|
|
|
// Write body pairs
|
|
uint32 num_body_pairs = uint32(selected_bp.size());
|
|
inStream.Write(num_body_pairs);
|
|
for (const BPKeyValue *bp_kv : selected_bp)
|
|
{
|
|
// Write body pair key
|
|
inStream.Write(bp_kv->GetKey());
|
|
|
|
// Write body pair
|
|
const CachedBodyPair &bp = bp_kv->GetValue();
|
|
bp.SaveState(inStream);
|
|
|
|
// Get attached manifolds
|
|
Array<const MKeyValue *> all_m;
|
|
GetAllManifoldsSorted(bp, all_m);
|
|
|
|
// Write num manifolds
|
|
uint32 num_manifolds = uint32(all_m.size());
|
|
inStream.Write(num_manifolds);
|
|
|
|
// Write all manifolds
|
|
for (const MKeyValue *m_kv : all_m)
|
|
{
|
|
// Write key
|
|
inStream.Write(m_kv->GetKey());
|
|
const CachedManifold &cm = m_kv->GetValue();
|
|
JPH_ASSERT((cm.mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0);
|
|
|
|
// Write amount of contacts
|
|
inStream.Write(cm.mNumContactPoints);
|
|
|
|
// Write manifold
|
|
cm.SaveState(inStream);
|
|
|
|
// Write contact points
|
|
for (uint32 i = 0; i < cm.mNumContactPoints; ++i)
|
|
cm.mContactPoints[i].SaveState(inStream);
|
|
}
|
|
}
|
|
|
|
// Get CCD manifolds
|
|
Array<const MKeyValue *> all_m;
|
|
GetAllCCDManifoldsSorted(all_m);
|
|
|
|
// Determine which ones to save
|
|
Array<const MKeyValue *> selected_m;
|
|
if (inFilter == nullptr)
|
|
selected_m = std::move(all_m);
|
|
else
|
|
{
|
|
selected_m.reserve(all_m.size());
|
|
for (const MKeyValue *m_kv : all_m)
|
|
if (inFilter->ShouldSaveContact(m_kv->GetKey().GetBody1ID(), m_kv->GetKey().GetBody2ID()))
|
|
selected_m.push_back(m_kv);
|
|
}
|
|
|
|
// Write all CCD manifold keys
|
|
uint32 num_manifolds = uint32(selected_m.size());
|
|
inStream.Write(num_manifolds);
|
|
for (const MKeyValue *m_kv : selected_m)
|
|
inStream.Write(m_kv->GetKey());
|
|
}
|
|
|
|
bool ContactConstraintManager::ManifoldCache::RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream, const StateRecorderFilter *inFilter)
|
|
{
|
|
JPH_ASSERT(!mIsFinalized);
|
|
|
|
bool success = true;
|
|
|
|
// Create a contact allocator for restoring the contact cache
|
|
ContactAllocator contact_allocator(GetContactAllocator());
|
|
|
|
// When validating, get all existing body pairs
|
|
Array<const BPKeyValue *> all_bp;
|
|
if (inStream.IsValidating())
|
|
inReadCache.GetAllBodyPairsSorted(all_bp);
|
|
|
|
// Read amount of body pairs
|
|
uint32 num_body_pairs;
|
|
if (inStream.IsValidating())
|
|
num_body_pairs = uint32(all_bp.size());
|
|
inStream.Read(num_body_pairs);
|
|
|
|
// Read entire cache
|
|
for (uint32 i = 0; i < num_body_pairs; ++i)
|
|
{
|
|
// Read key
|
|
BodyPair body_pair_key;
|
|
if (inStream.IsValidating() && i < all_bp.size())
|
|
body_pair_key = all_bp[i]->GetKey();
|
|
inStream.Read(body_pair_key);
|
|
|
|
// Check if we want to restore this contact
|
|
if (inFilter == nullptr || inFilter->ShouldRestoreContact(body_pair_key.mBodyA, body_pair_key.mBodyB))
|
|
{
|
|
// Create new entry for this body pair
|
|
uint64 body_pair_hash = body_pair_key.GetHash();
|
|
BPKeyValue *bp_kv = Create(contact_allocator, body_pair_key, body_pair_hash);
|
|
if (bp_kv == nullptr)
|
|
{
|
|
// Out of cache space
|
|
success = false;
|
|
break;
|
|
}
|
|
CachedBodyPair &bp = bp_kv->GetValue();
|
|
|
|
// Read body pair
|
|
if (inStream.IsValidating() && i < all_bp.size())
|
|
memcpy(&bp, &all_bp[i]->GetValue(), sizeof(CachedBodyPair));
|
|
bp.RestoreState(inStream);
|
|
|
|
// When validating, get all existing manifolds
|
|
Array<const MKeyValue *> all_m;
|
|
if (inStream.IsValidating())
|
|
inReadCache.GetAllManifoldsSorted(all_bp[i]->GetValue(), all_m);
|
|
|
|
// Read amount of manifolds
|
|
uint32 num_manifolds = 0;
|
|
if (inStream.IsValidating())
|
|
num_manifolds = uint32(all_m.size());
|
|
inStream.Read(num_manifolds);
|
|
|
|
uint32 handle = ManifoldMap::cInvalidHandle;
|
|
for (uint32 j = 0; j < num_manifolds; ++j)
|
|
{
|
|
// Read key
|
|
SubShapeIDPair sub_shape_key;
|
|
if (inStream.IsValidating() && j < all_m.size())
|
|
sub_shape_key = all_m[j]->GetKey();
|
|
inStream.Read(sub_shape_key);
|
|
uint64 sub_shape_key_hash = sub_shape_key.GetHash();
|
|
|
|
// Read amount of contact points
|
|
uint16 num_contact_points = 0;
|
|
if (inStream.IsValidating() && j < all_m.size())
|
|
num_contact_points = all_m[j]->GetValue().mNumContactPoints;
|
|
inStream.Read(num_contact_points);
|
|
|
|
// Read manifold
|
|
MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, num_contact_points);
|
|
if (m_kv == nullptr)
|
|
{
|
|
// Out of cache space
|
|
success = false;
|
|
break;
|
|
}
|
|
CachedManifold &cm = m_kv->GetValue();
|
|
if (inStream.IsValidating() && j < all_m.size())
|
|
{
|
|
memcpy(&cm, &all_m[j]->GetValue(), CachedManifold::sGetRequiredTotalSize(num_contact_points));
|
|
cm.mNumContactPoints = uint16(num_contact_points); // Restore num contact points
|
|
}
|
|
cm.RestoreState(inStream);
|
|
cm.mNextWithSameBodyPair = handle;
|
|
handle = ToHandle(m_kv);
|
|
|
|
// Read contact points
|
|
for (uint32 k = 0; k < num_contact_points; ++k)
|
|
cm.mContactPoints[k].RestoreState(inStream);
|
|
}
|
|
bp.mFirstCachedManifold = handle;
|
|
}
|
|
else
|
|
{
|
|
// Skip the contact
|
|
CachedBodyPair bp;
|
|
bp.RestoreState(inStream);
|
|
uint32 num_manifolds = 0;
|
|
inStream.Read(num_manifolds);
|
|
for (uint32 j = 0; j < num_manifolds; ++j)
|
|
{
|
|
SubShapeIDPair sub_shape_key;
|
|
inStream.Read(sub_shape_key);
|
|
uint16 num_contact_points;
|
|
inStream.Read(num_contact_points);
|
|
CachedManifold cm;
|
|
cm.RestoreState(inStream);
|
|
for (uint32 k = 0; k < num_contact_points; ++k)
|
|
cm.mContactPoints[0].RestoreState(inStream);
|
|
}
|
|
}
|
|
}
|
|
|
|
// When validating, get all existing CCD manifolds
|
|
Array<const MKeyValue *> all_m;
|
|
if (inStream.IsValidating())
|
|
inReadCache.GetAllCCDManifoldsSorted(all_m);
|
|
|
|
// Read amount of CCD manifolds
|
|
uint32 num_manifolds;
|
|
if (inStream.IsValidating())
|
|
num_manifolds = uint32(all_m.size());
|
|
inStream.Read(num_manifolds);
|
|
|
|
for (uint32 j = 0; j < num_manifolds; ++j)
|
|
{
|
|
// Read key
|
|
SubShapeIDPair sub_shape_key;
|
|
if (inStream.IsValidating() && j < all_m.size())
|
|
sub_shape_key = all_m[j]->GetKey();
|
|
inStream.Read(sub_shape_key);
|
|
|
|
// Check if we want to restore this contact
|
|
if (inFilter == nullptr || inFilter->ShouldRestoreContact(sub_shape_key.GetBody1ID(), sub_shape_key.GetBody2ID()))
|
|
{
|
|
// Create CCD manifold
|
|
uint64 sub_shape_key_hash = sub_shape_key.GetHash();
|
|
MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, 0);
|
|
if (m_kv == nullptr)
|
|
{
|
|
// Out of cache space
|
|
success = false;
|
|
break;
|
|
}
|
|
CachedManifold &cm = m_kv->GetValue();
|
|
cm.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
|
|
}
|
|
}
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
// We don't finalize until the last part is restored
|
|
if (inStream.IsLastPart())
|
|
mIsFinalized = true;
|
|
#endif
|
|
|
|
return success;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// ContactConstraintManager
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
ContactConstraintManager::ContactConstraintManager(const PhysicsSettings &inPhysicsSettings) :
|
|
mPhysicsSettings(inPhysicsSettings)
|
|
{
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
// For the first frame mark this empty buffer as finalized
|
|
mCache[mCacheWriteIdx ^ 1].Finalize();
|
|
#endif
|
|
}
|
|
|
|
ContactConstraintManager::~ContactConstraintManager()
|
|
{
|
|
JPH_ASSERT(mConstraints == nullptr);
|
|
}
|
|
|
|
void ContactConstraintManager::Init(uint inMaxBodyPairs, uint inMaxContactConstraints)
|
|
{
|
|
// Limit the number of constraints so that the allocation size fits in an unsigned integer
|
|
mMaxConstraints = min(inMaxContactConstraints, cMaxContactConstraintsLimit);
|
|
JPH_ASSERT(mMaxConstraints == inMaxContactConstraints, "Cannot support this many contact constraints!");
|
|
|
|
// Calculate worst case cache usage
|
|
constexpr uint cMaxManifoldSizePerConstraint = sizeof(CachedManifold) + (MaxContactPoints - 1) * sizeof(CachedContactPoint);
|
|
static_assert(cMaxManifoldSizePerConstraint < sizeof(ContactConstraint)); // If not true, then the next line can overflow
|
|
uint cached_manifolds_size = mMaxConstraints * cMaxManifoldSizePerConstraint;
|
|
|
|
// Init the caches
|
|
mCache[0].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
|
|
mCache[1].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
|
|
}
|
|
|
|
void ContactConstraintManager::PrepareConstraintBuffer(PhysicsUpdateContext *inContext)
|
|
{
|
|
// Store context
|
|
mUpdateContext = inContext;
|
|
|
|
// Allocate temporary constraint buffer
|
|
JPH_ASSERT(mConstraints == nullptr);
|
|
mConstraints = (ContactConstraint *)inContext->mTempAllocator->Allocate(mMaxConstraints * sizeof(ContactConstraint));
|
|
}
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE void ContactConstraintManager::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
|
|
{
|
|
// Calculate scaled mass and inertia
|
|
Mat44 inv_i1;
|
|
if constexpr (Type1 == EMotionType::Dynamic)
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
inv_i1 = inSettings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inTransformBody1.GetRotation());
|
|
}
|
|
else
|
|
{
|
|
inv_i1 = Mat44::sZero();
|
|
}
|
|
|
|
Mat44 inv_i2;
|
|
if constexpr (Type2 == EMotionType::Dynamic)
|
|
{
|
|
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
|
|
inv_i2 = inSettings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inTransformBody2.GetRotation());
|
|
}
|
|
else
|
|
{
|
|
inv_i2 = Mat44::sZero();
|
|
}
|
|
|
|
// Calculate tangents
|
|
Vec3 t1, t2;
|
|
ioConstraint.GetTangents(t1, t2);
|
|
|
|
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
|
|
|
|
// Calculate value for restitution correction
|
|
float gravity_dt_dot_normal = inGravityDeltaTime.Dot(ws_normal);
|
|
|
|
// Setup velocity constraint properties
|
|
float min_velocity_for_restitution = mPhysicsSettings.mMinVelocityForRestitution;
|
|
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
|
|
{
|
|
RVec3 p1 = inTransformBody1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
|
|
RVec3 p2 = inTransformBody2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
|
|
wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(inDeltaTime, gravity_dt_dot_normal, inBody1, inBody2, ioConstraint.mInvMass1, ioConstraint.mInvMass2, inv_i1, inv_i2, p1, p2, ws_normal, t1, t2, inSettings, min_velocity_for_restitution);
|
|
}
|
|
}
|
|
|
|
inline void ContactConstraintManager::CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
|
|
{
|
|
// Dispatch to the correct templated form
|
|
switch (inBody1.GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
switch (inBody2.GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
|
|
break;
|
|
|
|
case EMotionType::Kinematic:
|
|
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Kinematic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
|
|
break;
|
|
|
|
case EMotionType::Static:
|
|
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Static>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EMotionType::Kinematic:
|
|
JPH_ASSERT(inBody2.IsDynamic());
|
|
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Kinematic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
|
|
break;
|
|
|
|
case EMotionType::Static:
|
|
JPH_ASSERT(inBody2.IsDynamic());
|
|
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Static, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ContactConstraintManager::GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
// Start with nothing found and not handled
|
|
outConstraintCreated = false;
|
|
outPairHandled = false;
|
|
|
|
// Swap bodies so that body 1 id < body 2 id
|
|
Body *body1, *body2;
|
|
if (inBody1.GetID() < inBody2.GetID())
|
|
{
|
|
body1 = &inBody1;
|
|
body2 = &inBody2;
|
|
}
|
|
else
|
|
{
|
|
body1 = &inBody2;
|
|
body2 = &inBody1;
|
|
}
|
|
|
|
// Find the cached body pair
|
|
BodyPair body_pair_key(body1->GetID(), body2->GetID());
|
|
uint64 body_pair_hash = body_pair_key.GetHash();
|
|
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
|
|
const BPKeyValue *kv = read_cache.Find(body_pair_key, body_pair_hash);
|
|
if (kv == nullptr)
|
|
return;
|
|
const CachedBodyPair &input_cbp = kv->GetValue();
|
|
|
|
// Get relative translation
|
|
Quat inv_r1 = body1->GetRotation().Conjugated();
|
|
Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
|
|
|
|
// Get old position delta
|
|
Vec3 old_delta_position = Vec3::sLoadFloat3Unsafe(input_cbp.mDeltaPosition);
|
|
|
|
// Check if bodies are still roughly in the same relative position
|
|
if ((delta_position - old_delta_position).LengthSq() > mPhysicsSettings.mBodyPairCacheMaxDeltaPositionSq)
|
|
return;
|
|
|
|
// Determine relative orientation
|
|
Quat delta_rotation = inv_r1 * body2->GetRotation();
|
|
|
|
// Reconstruct old quaternion delta
|
|
Quat old_delta_rotation = Quat::sLoadFloat3Unsafe(input_cbp.mDeltaRotation);
|
|
|
|
// Check if bodies are still roughly in the same relative orientation
|
|
// The delta between 2 quaternions p and q is: p q^* = [rotation_axis * sin(angle / 2), cos(angle / 2)]
|
|
// From the W component we can extract the angle: cos(angle / 2) = px * qx + py * qy + pz * qz + pw * qw = p . q
|
|
// Since we want to abort if the rotation is smaller than -angle or bigger than angle, we can write the comparison as |p . q| < cos(angle / 2)
|
|
if (abs(delta_rotation.Dot(old_delta_rotation)) < mPhysicsSettings.mBodyPairCacheCosMaxDeltaRotationDiv2)
|
|
return;
|
|
|
|
// The cache is valid, return that we've handled this body pair
|
|
outPairHandled = true;
|
|
|
|
// Copy the cached body pair to this frame
|
|
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
|
|
BPKeyValue *output_bp_kv = write_cache.Create(ioContactAllocator, body_pair_key, body_pair_hash);
|
|
if (output_bp_kv == nullptr)
|
|
return; // Out of cache space
|
|
CachedBodyPair *output_cbp = &output_bp_kv->GetValue();
|
|
memcpy(output_cbp, &input_cbp, sizeof(CachedBodyPair));
|
|
|
|
// If there were no contacts, we have handled the contact
|
|
if (input_cbp.mFirstCachedManifold == ManifoldMap::cInvalidHandle)
|
|
return;
|
|
|
|
// Get body transforms
|
|
RMat44 transform_body1 = body1->GetCenterOfMassTransform();
|
|
RMat44 transform_body2 = body2->GetCenterOfMassTransform();
|
|
|
|
// Get time step
|
|
float delta_time = mUpdateContext->mStepDeltaTime;
|
|
|
|
// Calculate value for restitution correction
|
|
Vec3 gravity_dt = mUpdateContext->mPhysicsSystem->GetGravity() * delta_time;
|
|
|
|
// Copy manifolds
|
|
uint32 output_handle = ManifoldMap::cInvalidHandle;
|
|
uint32 input_handle = input_cbp.mFirstCachedManifold;
|
|
do
|
|
{
|
|
JPH_PROFILE("Add Constraint From Cached Manifold");
|
|
|
|
// Find the existing manifold
|
|
const MKeyValue *input_kv = read_cache.FromHandle(input_handle);
|
|
const SubShapeIDPair &input_key = input_kv->GetKey();
|
|
const CachedManifold &input_cm = input_kv->GetValue();
|
|
JPH_ASSERT(input_cm.mNumContactPoints > 0); // There should be contact points in this manifold!
|
|
|
|
// Create room for manifold in write buffer and copy data
|
|
uint64 input_hash = input_key.GetHash();
|
|
MKeyValue *output_kv = write_cache.Create(ioContactAllocator, input_key, input_hash, input_cm.mNumContactPoints);
|
|
if (output_kv == nullptr)
|
|
break; // Out of cache space
|
|
CachedManifold *output_cm = &output_kv->GetValue();
|
|
memcpy(output_cm, &input_cm, CachedManifold::sGetRequiredTotalSize(input_cm.mNumContactPoints));
|
|
|
|
// Link the object under the body pairs
|
|
output_cm->mNextWithSameBodyPair = output_handle;
|
|
output_handle = write_cache.ToHandle(output_kv);
|
|
|
|
// Calculate default contact settings
|
|
ContactSettings settings;
|
|
settings.mCombinedFriction = mCombineFriction(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
|
|
settings.mCombinedRestitution = mCombineRestitution(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
|
|
settings.mIsSensor = body1->IsSensor() || body2->IsSensor();
|
|
|
|
// Calculate world space contact normal
|
|
Vec3 world_space_normal = transform_body2.Multiply3x3(Vec3::sLoadFloat3Unsafe(output_cm->mContactNormal)).Normalized();
|
|
|
|
// Call contact listener to update settings
|
|
if (mContactListener != nullptr)
|
|
{
|
|
// Convert constraint to manifold structure for callback
|
|
ContactManifold manifold;
|
|
manifold.mWorldSpaceNormal = world_space_normal;
|
|
manifold.mSubShapeID1 = input_key.GetSubShapeID1();
|
|
manifold.mSubShapeID2 = input_key.GetSubShapeID2();
|
|
manifold.mBaseOffset = transform_body1.GetTranslation();
|
|
manifold.mRelativeContactPointsOn1.resize(output_cm->mNumContactPoints);
|
|
manifold.mRelativeContactPointsOn2.resize(output_cm->mNumContactPoints);
|
|
Mat44 local_transform_body2 = transform_body2.PostTranslated(-manifold.mBaseOffset).ToMat44();
|
|
float penetration_depth = -FLT_MAX;
|
|
for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
|
|
{
|
|
const CachedContactPoint &ccp = output_cm->mContactPoints[i];
|
|
manifold.mRelativeContactPointsOn1[i] = transform_body1.Multiply3x3(Vec3::sLoadFloat3Unsafe(ccp.mPosition1));
|
|
manifold.mRelativeContactPointsOn2[i] = local_transform_body2 * Vec3::sLoadFloat3Unsafe(ccp.mPosition2);
|
|
penetration_depth = max(penetration_depth, (manifold.mRelativeContactPointsOn1[0] - manifold.mRelativeContactPointsOn2[0]).Dot(world_space_normal));
|
|
}
|
|
manifold.mPenetrationDepth = penetration_depth; // We don't have the penetration depth anymore, estimate it
|
|
|
|
// Notify callback
|
|
mContactListener->OnContactPersisted(*body1, *body2, manifold, settings);
|
|
}
|
|
|
|
JPH_ASSERT(settings.mIsSensor || !(body1->IsSensor() || body2->IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
|
|
if (!settings.mIsSensor // If one of the bodies is a sensor, don't actually create the constraint
|
|
&& ((body1->IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
|
|
|| (body2->IsDynamic() && settings.mInvMassScale2 != 0.0f)))
|
|
{
|
|
// Add contact constraint in world space for the solver
|
|
uint32 constraint_idx = mNumConstraints++;
|
|
if (constraint_idx >= mMaxConstraints)
|
|
{
|
|
ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
|
|
break;
|
|
}
|
|
|
|
// A constraint will be created
|
|
outConstraintCreated = true;
|
|
|
|
ContactConstraint &constraint = mConstraints[constraint_idx];
|
|
new (&constraint) ContactConstraint();
|
|
constraint.mBody1 = body1;
|
|
constraint.mBody2 = body2;
|
|
constraint.mSortKey = input_hash;
|
|
world_space_normal.StoreFloat3(&constraint.mWorldSpaceNormal);
|
|
constraint.mCombinedFriction = settings.mCombinedFriction;
|
|
constraint.mInvMass1 = body1->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * body1->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
|
|
constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
|
|
constraint.mInvMass2 = body2->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * body2->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
|
|
constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
|
|
constraint.mContactPoints.resize(output_cm->mNumContactPoints);
|
|
for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
|
|
{
|
|
CachedContactPoint &ccp = output_cm->mContactPoints[i];
|
|
WorldContactPoint &wcp = constraint.mContactPoints[i];
|
|
wcp.mNonPenetrationConstraint.SetTotalLambda(ccp.mNonPenetrationLambda);
|
|
wcp.mFrictionConstraint1.SetTotalLambda(ccp.mFrictionLambda[0]);
|
|
wcp.mFrictionConstraint2.SetTotalLambda(ccp.mFrictionLambda[1]);
|
|
wcp.mContactPoint = &ccp;
|
|
}
|
|
|
|
JPH_DET_LOG("GetContactsFromCache: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
|
|
|
|
// Calculate friction and non-penetration constraint properties for all contact points
|
|
CalculateFrictionAndNonPenetrationConstraintProperties(constraint, settings, delta_time, gravity_dt, transform_body1, transform_body2, *body1, *body2);
|
|
|
|
// Notify island builder
|
|
mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
// Draw the manifold
|
|
if (sDrawContactManifolds)
|
|
constraint.Draw(DebugRenderer::sInstance, Color::sYellow);
|
|
#endif // JPH_DEBUG_RENDERER
|
|
}
|
|
|
|
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
|
|
input_cm.mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
|
|
|
|
// Fetch the next manifold
|
|
input_handle = input_cm.mNextWithSameBodyPair;
|
|
}
|
|
while (input_handle != ManifoldMap::cInvalidHandle);
|
|
output_cbp->mFirstCachedManifold = output_handle;
|
|
}
|
|
|
|
ContactConstraintManager::BodyPairHandle ContactConstraintManager::AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
// Swap bodies so that body 1 id < body 2 id
|
|
const Body *body1, *body2;
|
|
if (inBody1.GetID() < inBody2.GetID())
|
|
{
|
|
body1 = &inBody1;
|
|
body2 = &inBody2;
|
|
}
|
|
else
|
|
{
|
|
body1 = &inBody2;
|
|
body2 = &inBody1;
|
|
}
|
|
|
|
// Add an entry
|
|
BodyPair body_pair_key(body1->GetID(), body2->GetID());
|
|
uint64 body_pair_hash = body_pair_key.GetHash();
|
|
BPKeyValue *body_pair_kv = mCache[mCacheWriteIdx].Create(ioContactAllocator, body_pair_key, body_pair_hash);
|
|
if (body_pair_kv == nullptr)
|
|
return nullptr; // Out of cache space
|
|
CachedBodyPair *cbp = &body_pair_kv->GetValue();
|
|
cbp->mFirstCachedManifold = ManifoldMap::cInvalidHandle;
|
|
|
|
// Get relative translation
|
|
Quat inv_r1 = body1->GetRotation().Conjugated();
|
|
Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
|
|
|
|
// Store it
|
|
delta_position.StoreFloat3(&cbp->mDeltaPosition);
|
|
|
|
// Determine relative orientation
|
|
Quat delta_rotation = inv_r1 * body2->GetRotation();
|
|
|
|
// Store it
|
|
delta_rotation.StoreFloat3(&cbp->mDeltaRotation);
|
|
|
|
return cbp;
|
|
}
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
bool ContactConstraintManager::TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
|
|
{
|
|
// Calculate hash
|
|
SubShapeIDPair key { inBody1.GetID(), inManifold.mSubShapeID1, inBody2.GetID(), inManifold.mSubShapeID2 };
|
|
uint64 key_hash = key.GetHash();
|
|
|
|
// Determine number of contact points
|
|
int num_contact_points = (int)inManifold.mRelativeContactPointsOn1.size();
|
|
JPH_ASSERT(num_contact_points <= MaxContactPoints);
|
|
JPH_ASSERT(num_contact_points == (int)inManifold.mRelativeContactPointsOn2.size());
|
|
|
|
// Reserve space for new contact cache entry
|
|
// Note that for dynamic vs dynamic we always require the first body to have a lower body id to get a consistent key
|
|
// under which to look up the contact
|
|
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
|
|
MKeyValue *new_manifold_kv = write_cache.Create(ioContactAllocator, key, key_hash, num_contact_points);
|
|
if (new_manifold_kv == nullptr)
|
|
return false; // Out of cache space
|
|
CachedManifold *new_manifold = &new_manifold_kv->GetValue();
|
|
|
|
// Transform the world space normal to the space of body 2 (this is usually the static body)
|
|
RMat44 inverse_transform_body2 = inBody2.GetInverseCenterOfMassTransform();
|
|
inverse_transform_body2.Multiply3x3(inManifold.mWorldSpaceNormal).Normalized().StoreFloat3(&new_manifold->mContactNormal);
|
|
|
|
// Settings object that gets passed to the callback
|
|
ContactSettings settings;
|
|
settings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
|
|
settings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
|
|
settings.mIsSensor = inBody1.IsSensor() || inBody2.IsSensor();
|
|
|
|
// Get the contact points for the old cache entry
|
|
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
|
|
const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
|
|
const CachedContactPoint *ccp_start;
|
|
const CachedContactPoint *ccp_end;
|
|
if (old_manifold_kv != nullptr)
|
|
{
|
|
// Call point persisted listener
|
|
if (mContactListener != nullptr)
|
|
mContactListener->OnContactPersisted(inBody1, inBody2, inManifold, settings);
|
|
|
|
// Fetch the contact points from the old manifold
|
|
const CachedManifold *old_manifold = &old_manifold_kv->GetValue();
|
|
ccp_start = old_manifold->mContactPoints;
|
|
ccp_end = ccp_start + old_manifold->mNumContactPoints;
|
|
|
|
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
|
|
old_manifold->mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
|
|
}
|
|
else
|
|
{
|
|
// Call point added listener
|
|
if (mContactListener != nullptr)
|
|
mContactListener->OnContactAdded(inBody1, inBody2, inManifold, settings);
|
|
|
|
// No contact points available from old manifold
|
|
ccp_start = nullptr;
|
|
ccp_end = nullptr;
|
|
}
|
|
|
|
// Get inverse transform for body 1
|
|
RMat44 inverse_transform_body1 = inBody1.GetInverseCenterOfMassTransform();
|
|
|
|
bool contact_constraint_created = false;
|
|
|
|
// If one of the bodies is a sensor, don't actually create the constraint
|
|
JPH_ASSERT(settings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
|
|
if (!settings.mIsSensor
|
|
&& ((inBody1.IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
|
|
|| (inBody2.IsDynamic() && settings.mInvMassScale2 != 0.0f)))
|
|
{
|
|
// Add contact constraint
|
|
uint32 constraint_idx = mNumConstraints++;
|
|
if (constraint_idx >= mMaxConstraints)
|
|
{
|
|
ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
|
|
|
|
// Manifold has been created already, we're not filling it in, so we need to reset the contact number of points.
|
|
// Note that we don't hook it up to the body pair cache so that it won't be used as a cache during the next simulation.
|
|
new_manifold->mNumContactPoints = 0;
|
|
return false;
|
|
}
|
|
|
|
// We will create a contact constraint
|
|
contact_constraint_created = true;
|
|
|
|
ContactConstraint &constraint = mConstraints[constraint_idx];
|
|
new (&constraint) ContactConstraint();
|
|
constraint.mBody1 = &inBody1;
|
|
constraint.mBody2 = &inBody2;
|
|
constraint.mSortKey = key_hash;
|
|
inManifold.mWorldSpaceNormal.StoreFloat3(&constraint.mWorldSpaceNormal);
|
|
constraint.mCombinedFriction = settings.mCombinedFriction;
|
|
constraint.mInvMass1 = inBody1.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
|
|
constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
|
|
constraint.mInvMass2 = inBody2.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
|
|
constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
|
|
|
|
JPH_DET_LOG("TemplatedAddContactConstraint: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
|
|
|
|
// Notify island builder
|
|
mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, inBody1.GetIndexInActiveBodiesInternal(), inBody2.GetIndexInActiveBodiesInternal());
|
|
|
|
// Get time step
|
|
float delta_time = mUpdateContext->mStepDeltaTime;
|
|
|
|
// Calculate value for restitution correction
|
|
float gravity_dt_dot_normal = inManifold.mWorldSpaceNormal.Dot(mUpdateContext->mPhysicsSystem->GetGravity() * delta_time);
|
|
|
|
// Calculate scaled mass and inertia
|
|
float inv_m1;
|
|
Mat44 inv_i1;
|
|
if constexpr (Type1 == EMotionType::Dynamic)
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
|
|
inv_m1 = settings.mInvMassScale1 * mp1->GetInverseMass();
|
|
inv_i1 = settings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inverse_transform_body1.Transposed3x3());
|
|
}
|
|
else
|
|
{
|
|
inv_m1 = 0.0f;
|
|
inv_i1 = Mat44::sZero();
|
|
}
|
|
|
|
float inv_m2;
|
|
Mat44 inv_i2;
|
|
if constexpr (Type2 == EMotionType::Dynamic)
|
|
{
|
|
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
|
|
inv_m2 = settings.mInvMassScale2 * mp2->GetInverseMass();
|
|
inv_i2 = settings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inverse_transform_body2.Transposed3x3());
|
|
}
|
|
else
|
|
{
|
|
inv_m2 = 0.0f;
|
|
inv_i2 = Mat44::sZero();
|
|
}
|
|
|
|
// Calculate tangents
|
|
Vec3 t1, t2;
|
|
constraint.GetTangents(t1, t2);
|
|
|
|
constraint.mContactPoints.resize(num_contact_points);
|
|
for (int i = 0; i < num_contact_points; ++i)
|
|
{
|
|
// Convert to world space and set positions
|
|
WorldContactPoint &wcp = constraint.mContactPoints[i];
|
|
RVec3 p1_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i];
|
|
RVec3 p2_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i];
|
|
|
|
// Convert to local space to the body
|
|
Vec3 p1_ls = Vec3(inverse_transform_body1 * p1_ws);
|
|
Vec3 p2_ls = Vec3(inverse_transform_body2 * p2_ws);
|
|
|
|
// Check if we have a close contact point from last update
|
|
bool lambda_set = false;
|
|
for (const CachedContactPoint *ccp = ccp_start; ccp < ccp_end; ccp++)
|
|
if (Vec3::sLoadFloat3Unsafe(ccp->mPosition1).IsClose(p1_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq)
|
|
&& Vec3::sLoadFloat3Unsafe(ccp->mPosition2).IsClose(p2_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq))
|
|
{
|
|
// Get lambdas from previous frame
|
|
wcp.mNonPenetrationConstraint.SetTotalLambda(ccp->mNonPenetrationLambda);
|
|
wcp.mFrictionConstraint1.SetTotalLambda(ccp->mFrictionLambda[0]);
|
|
wcp.mFrictionConstraint2.SetTotalLambda(ccp->mFrictionLambda[1]);
|
|
lambda_set = true;
|
|
break;
|
|
}
|
|
if (!lambda_set)
|
|
{
|
|
wcp.mNonPenetrationConstraint.SetTotalLambda(0.0f);
|
|
wcp.mFrictionConstraint1.SetTotalLambda(0.0f);
|
|
wcp.mFrictionConstraint2.SetTotalLambda(0.0f);
|
|
}
|
|
|
|
// Create new contact point
|
|
CachedContactPoint &cp = new_manifold->mContactPoints[i];
|
|
p1_ls.StoreFloat3(&cp.mPosition1);
|
|
p2_ls.StoreFloat3(&cp.mPosition2);
|
|
wcp.mContactPoint = &cp;
|
|
|
|
// Setup velocity constraint
|
|
wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(delta_time, gravity_dt_dot_normal, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1_ws, p2_ws, inManifold.mWorldSpaceNormal, t1, t2, settings, mPhysicsSettings.mMinVelocityForRestitution);
|
|
}
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
// Draw the manifold
|
|
if (sDrawContactManifolds)
|
|
constraint.Draw(DebugRenderer::sInstance, Color::sOrange);
|
|
#endif // JPH_DEBUG_RENDERER
|
|
}
|
|
else
|
|
{
|
|
// Store the contact manifold in the cache
|
|
for (int i = 0; i < num_contact_points; ++i)
|
|
{
|
|
// Convert to local space to the body
|
|
Vec3 p1 = Vec3(inverse_transform_body1 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i]));
|
|
Vec3 p2 = Vec3(inverse_transform_body2 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i]));
|
|
|
|
// Create new contact point
|
|
CachedContactPoint &cp = new_manifold->mContactPoints[i];
|
|
p1.StoreFloat3(&cp.mPosition1);
|
|
p2.StoreFloat3(&cp.mPosition2);
|
|
|
|
// Reset contact impulses, we haven't applied any
|
|
cp.mNonPenetrationLambda = 0.0f;
|
|
cp.mFrictionLambda[0] = 0.0f;
|
|
cp.mFrictionLambda[1] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Store cached contact point in body pair cache
|
|
CachedBodyPair *cbp = reinterpret_cast<CachedBodyPair *>(inBodyPairHandle);
|
|
new_manifold->mNextWithSameBodyPair = cbp->mFirstCachedManifold;
|
|
cbp->mFirstCachedManifold = write_cache.ToHandle(new_manifold_kv);
|
|
|
|
// A contact constraint was added
|
|
return contact_constraint_created;
|
|
}
|
|
|
|
bool ContactConstraintManager::AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
JPH_DET_LOG("AddContactConstraint: id1: " << inBody1.GetID() << " id2: " << inBody2.GetID()
|
|
<< " subshape1: " << inManifold.mSubShapeID1 << " subshape2: " << inManifold.mSubShapeID2
|
|
<< " normal: " << inManifold.mWorldSpaceNormal << " pendepth: " << inManifold.mPenetrationDepth);
|
|
|
|
JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
|
|
|
|
// Swap bodies so that body 1 id < body 2 id
|
|
const ContactManifold *manifold;
|
|
Body *body1, *body2;
|
|
ContactManifold temp;
|
|
if (inBody2.GetID() < inBody1.GetID())
|
|
{
|
|
body1 = &inBody2;
|
|
body2 = &inBody1;
|
|
temp = inManifold.SwapShapes();
|
|
manifold = &temp;
|
|
}
|
|
else
|
|
{
|
|
body1 = &inBody1;
|
|
body2 = &inBody2;
|
|
manifold = &inManifold;
|
|
}
|
|
|
|
// Dispatch to the correct templated form
|
|
// Note: Non-dynamic vs non-dynamic can happen in this case due to one body being a sensor, so we need to have an extended switch case here
|
|
switch (body1->GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
{
|
|
switch (body2->GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Kinematic:
|
|
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Static:
|
|
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EMotionType::Kinematic:
|
|
switch (body2->GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Kinematic:
|
|
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Static:
|
|
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EMotionType::Static:
|
|
switch (body2->GetMotionType())
|
|
{
|
|
case EMotionType::Dynamic:
|
|
return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Kinematic:
|
|
return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
|
|
|
|
case EMotionType::Static: // Static vs static not possible
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ContactConstraintManager::OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings)
|
|
{
|
|
JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
|
|
|
|
// Calculate contact settings
|
|
outSettings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
|
|
outSettings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
|
|
outSettings.mIsSensor = false; // For now, no sensors are supported during CCD
|
|
|
|
// The remainder of this function only deals with calling contact callbacks, if there's no contact callback we also don't need to do this work
|
|
if (mContactListener != nullptr)
|
|
{
|
|
// Swap bodies so that body 1 id < body 2 id
|
|
const ContactManifold *manifold;
|
|
const Body *body1, *body2;
|
|
ContactManifold temp;
|
|
if (inBody2.GetID() < inBody1.GetID())
|
|
{
|
|
body1 = &inBody2;
|
|
body2 = &inBody1;
|
|
temp = inManifold.SwapShapes();
|
|
manifold = &temp;
|
|
}
|
|
else
|
|
{
|
|
body1 = &inBody1;
|
|
body2 = &inBody2;
|
|
manifold = &inManifold;
|
|
}
|
|
|
|
// Calculate hash
|
|
SubShapeIDPair key { body1->GetID(), manifold->mSubShapeID1, body2->GetID(), manifold->mSubShapeID2 };
|
|
uint64 key_hash = key.GetHash();
|
|
|
|
// Check if we already created this contact this physics update
|
|
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
|
|
MKVAndCreated new_manifold_kv = write_cache.FindOrCreate(ioContactAllocator, key, key_hash, 0);
|
|
if (new_manifold_kv.second)
|
|
{
|
|
// This contact is new for this physics update, check if previous update we already had this contact.
|
|
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
|
|
const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
|
|
if (old_manifold_kv == nullptr)
|
|
{
|
|
// New contact
|
|
mContactListener->OnContactAdded(*body1, *body2, *manifold, outSettings);
|
|
}
|
|
else
|
|
{
|
|
// Existing contact
|
|
mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
|
|
|
|
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
|
|
old_manifold_kv->GetValue().mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
|
|
}
|
|
|
|
// Check if the cache is full
|
|
if (new_manifold_kv.first != nullptr)
|
|
{
|
|
// We don't store any contact points in this manifold as it is not for caching impulses, we only need to know that the contact was created
|
|
CachedManifold &new_manifold = new_manifold_kv.first->GetValue();
|
|
new_manifold.mContactNormal = { 0, 0, 0 };
|
|
new_manifold.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already found this contact this physics update.
|
|
// Note that we can trigger OnContactPersisted multiple times per physics update, but otherwise we have no way of obtaining the settings
|
|
mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
|
|
}
|
|
|
|
// If we swapped body1 and body2 we need to swap the mass scales back
|
|
if (manifold == &temp)
|
|
{
|
|
std::swap(outSettings.mInvMassScale1, outSettings.mInvMassScale2);
|
|
std::swap(outSettings.mInvInertiaScale1, outSettings.mInvInertiaScale2);
|
|
// Note we do not need to negate the relative surface velocity as it is not applied by the CCD collision constraint
|
|
}
|
|
}
|
|
|
|
JPH_ASSERT(outSettings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
|
|
}
|
|
|
|
void ContactConstraintManager::SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
QuickSort(inConstraintIdxBegin, inConstraintIdxEnd, [this](uint32 inLHS, uint32 inRHS) {
|
|
const ContactConstraint &lhs = mConstraints[inLHS];
|
|
const ContactConstraint &rhs = mConstraints[inRHS];
|
|
|
|
// Most of the time the sort key will be different so we sort on that
|
|
if (lhs.mSortKey != rhs.mSortKey)
|
|
return lhs.mSortKey < rhs.mSortKey;
|
|
|
|
// If they're equal we use the IDs of body 1 to order
|
|
if (lhs.mBody1 != rhs.mBody1)
|
|
return lhs.mBody1->GetID() < rhs.mBody1->GetID();
|
|
|
|
// If they're still equal we use the IDs of body 2 to order
|
|
if (lhs.mBody2 != rhs.mBody2)
|
|
return lhs.mBody2->GetID() < rhs.mBody2->GetID();
|
|
|
|
JPH_ASSERT(inLHS == inRHS, "Hash collision, ordering will be inconsistent");
|
|
return false;
|
|
});
|
|
}
|
|
|
|
void ContactConstraintManager::FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
// Mark cache as finalized
|
|
ManifoldCache &old_write_cache = mCache[mCacheWriteIdx];
|
|
old_write_cache.Finalize();
|
|
|
|
// Check that the count of body pairs and manifolds that we tracked outside of the cache (to avoid contention on an atomic) is correct
|
|
JPH_ASSERT(old_write_cache.GetNumBodyPairs() == inExpectedNumBodyPairs);
|
|
JPH_ASSERT(old_write_cache.GetNumManifolds() == inExpectedNumManifolds);
|
|
#endif
|
|
|
|
// Buffers are now complete, make write buffer the read buffer
|
|
mCacheWriteIdx ^= 1;
|
|
|
|
// Get the old read cache / new write cache
|
|
ManifoldCache &old_read_cache = mCache[mCacheWriteIdx];
|
|
|
|
// Call the contact point removal callbacks
|
|
if (mContactListener != nullptr)
|
|
old_read_cache.ContactPointRemovedCallbacks(mContactListener);
|
|
|
|
// We're done with the old read cache now
|
|
old_read_cache.Clear();
|
|
|
|
// Use the amount of contacts from the last iteration to determine the amount of buckets to use in the hash map for the next iteration
|
|
old_read_cache.Prepare(inExpectedNumBodyPairs, inExpectedNumManifolds);
|
|
}
|
|
|
|
bool ContactConstraintManager::WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const
|
|
{
|
|
// The body pair needs to be in the cache and it needs to have a manifold (otherwise it's just a record indicating that there are no collisions)
|
|
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
|
|
BodyPair key;
|
|
if (inBody1ID < inBody2ID)
|
|
key = BodyPair(inBody1ID, inBody2ID);
|
|
else
|
|
key = BodyPair(inBody2ID, inBody1ID);
|
|
uint64 key_hash = key.GetHash();
|
|
const BPKeyValue *kv = read_cache.Find(key, key_hash);
|
|
return kv != nullptr && kv->GetValue().mFirstCachedManifold != ManifoldMap::cInvalidHandle;
|
|
}
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE void ContactConstraintManager::sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio)
|
|
{
|
|
// Calculate tangents
|
|
Vec3 t1, t2;
|
|
ioConstraint.GetTangents(t1, t2);
|
|
|
|
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
|
|
|
|
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
|
|
{
|
|
// Warm starting: Apply impulse from last frame
|
|
if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
|
|
{
|
|
wcp.mFrictionConstraint1.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, inWarmStartImpulseRatio);
|
|
wcp.mFrictionConstraint2.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, inWarmStartImpulseRatio);
|
|
}
|
|
wcp.mNonPenetrationConstraint.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, inWarmStartImpulseRatio);
|
|
}
|
|
}
|
|
|
|
template <class MotionPropertiesCallback>
|
|
void ContactConstraintManager::WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, MotionPropertiesCallback &ioCallback)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
|
|
{
|
|
ContactConstraint &constraint = mConstraints[*constraint_idx];
|
|
|
|
// Fetch bodies
|
|
Body &body1 = *constraint.mBody1;
|
|
EMotionType motion_type1 = body1.GetMotionType();
|
|
MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
|
|
|
|
Body &body2 = *constraint.mBody2;
|
|
EMotionType motion_type2 = body2.GetMotionType();
|
|
MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
|
|
|
|
// Dispatch to the correct templated form
|
|
// Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
|
|
if (motion_type1 == EMotionType::Dynamic)
|
|
{
|
|
if (motion_type2 == EMotionType::Dynamic)
|
|
{
|
|
sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
|
|
|
|
ioCallback(motion_properties2);
|
|
}
|
|
else
|
|
sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
|
|
|
|
ioCallback(motion_properties1);
|
|
}
|
|
else
|
|
{
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
|
|
sWarmStartConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
|
|
|
|
ioCallback(motion_properties2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Specialize for the two body callback types
|
|
template void ContactConstraintManager::WarmStartVelocityConstraints<CalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, CalculateSolverSteps &ioCallback);
|
|
template void ContactConstraintManager::WarmStartVelocityConstraints<DummyCalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, DummyCalculateSolverSteps &ioCallback);
|
|
|
|
template <EMotionType Type1, EMotionType Type2>
|
|
JPH_INLINE bool ContactConstraintManager::sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2)
|
|
{
|
|
bool any_impulse_applied = false;
|
|
|
|
// Calculate tangents
|
|
Vec3 t1, t2;
|
|
ioConstraint.GetTangents(t1, t2);
|
|
|
|
// First apply all friction constraints (non-penetration is more important than friction)
|
|
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
|
|
{
|
|
// Check if friction is enabled
|
|
if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
|
|
{
|
|
// Calculate impulse to stop motion in tangential direction
|
|
float lambda1 = wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1);
|
|
float lambda2 = wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2);
|
|
float total_lambda_sq = Square(lambda1) + Square(lambda2);
|
|
|
|
// Calculate max impulse that can be applied. Note that we're using the non-penetration impulse from the previous iteration here.
|
|
// We do this because non-penetration is more important so is solved last (the last things that are solved in an iterative solver
|
|
// contribute the most).
|
|
float max_lambda_f = ioConstraint.mCombinedFriction * wcp.mNonPenetrationConstraint.GetTotalLambda();
|
|
|
|
// If the total lambda that we will apply is too large, scale it back
|
|
if (total_lambda_sq > Square(max_lambda_f))
|
|
{
|
|
float scale = max_lambda_f / sqrt(total_lambda_sq);
|
|
lambda1 *= scale;
|
|
lambda2 *= scale;
|
|
}
|
|
|
|
// Apply the friction impulse
|
|
if (wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, lambda1))
|
|
any_impulse_applied = true;
|
|
if (wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, lambda2))
|
|
any_impulse_applied = true;
|
|
}
|
|
}
|
|
|
|
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
|
|
|
|
// Then apply all non-penetration constraints
|
|
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
|
|
{
|
|
// Solve non penetration velocities
|
|
if (wcp.mNonPenetrationConstraint.TemplatedSolveVelocityConstraint<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, 0.0f, FLT_MAX))
|
|
any_impulse_applied = true;
|
|
}
|
|
|
|
return any_impulse_applied;
|
|
}
|
|
|
|
bool ContactConstraintManager::SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
bool any_impulse_applied = false;
|
|
|
|
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
|
|
{
|
|
ContactConstraint &constraint = mConstraints[*constraint_idx];
|
|
|
|
// Fetch bodies
|
|
Body &body1 = *constraint.mBody1;
|
|
EMotionType motion_type1 = body1.GetMotionType();
|
|
MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
|
|
|
|
Body &body2 = *constraint.mBody2;
|
|
EMotionType motion_type2 = body2.GetMotionType();
|
|
MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
|
|
|
|
// Dispatch to the correct templated form
|
|
switch (motion_type1)
|
|
{
|
|
case EMotionType::Dynamic:
|
|
switch (motion_type2)
|
|
{
|
|
case EMotionType::Dynamic:
|
|
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
|
|
break;
|
|
|
|
case EMotionType::Kinematic:
|
|
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(constraint, motion_properties1, motion_properties2);
|
|
break;
|
|
|
|
case EMotionType::Static:
|
|
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2);
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case EMotionType::Kinematic:
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
|
|
break;
|
|
|
|
case EMotionType::Static:
|
|
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
|
|
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return any_impulse_applied;
|
|
}
|
|
|
|
void ContactConstraintManager::StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const
|
|
{
|
|
// Copy back total applied impulse to cache for the next frame
|
|
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
|
|
{
|
|
const ContactConstraint &constraint = mConstraints[*constraint_idx];
|
|
|
|
for (const WorldContactPoint &wcp : constraint.mContactPoints)
|
|
{
|
|
wcp.mContactPoint->mNonPenetrationLambda = wcp.mNonPenetrationConstraint.GetTotalLambda();
|
|
wcp.mContactPoint->mFrictionLambda[0] = wcp.mFrictionConstraint1.GetTotalLambda();
|
|
wcp.mContactPoint->mFrictionLambda[1] = wcp.mFrictionConstraint2.GetTotalLambda();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ContactConstraintManager::SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
bool any_impulse_applied = false;
|
|
|
|
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
|
|
{
|
|
ContactConstraint &constraint = mConstraints[*constraint_idx];
|
|
|
|
// Fetch bodies
|
|
Body &body1 = *constraint.mBody1;
|
|
Body &body2 = *constraint.mBody2;
|
|
|
|
// Get transforms
|
|
RMat44 transform1 = body1.GetCenterOfMassTransform();
|
|
RMat44 transform2 = body2.GetCenterOfMassTransform();
|
|
|
|
Vec3 ws_normal = constraint.GetWorldSpaceNormal();
|
|
|
|
for (WorldContactPoint &wcp : constraint.mContactPoints)
|
|
{
|
|
// Calculate new contact point positions in world space (the bodies may have moved)
|
|
RVec3 p1 = transform1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
|
|
RVec3 p2 = transform2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
|
|
|
|
// Calculate separation along the normal (negative if interpenetrating)
|
|
// Allow a little penetration by default (PhysicsSettings::mPenetrationSlop) to avoid jittering between contact/no-contact which wipes out the contact cache and warm start impulses
|
|
// Clamp penetration to a max PhysicsSettings::mMaxPenetrationDistance so that we don't apply a huge impulse if we're penetrating a lot
|
|
float separation = max(Vec3(p2 - p1).Dot(ws_normal) + mPhysicsSettings.mPenetrationSlop, -mPhysicsSettings.mMaxPenetrationDistance);
|
|
|
|
// Only enforce constraint when separation < 0 (otherwise we're apart)
|
|
if (separation < 0.0f)
|
|
{
|
|
// Update constraint properties (bodies may have moved)
|
|
wcp.CalculateNonPenetrationConstraintProperties(body1, constraint.mInvMass1, constraint.mInvInertiaScale1, body2, constraint.mInvMass2, constraint.mInvInertiaScale2, p1, p2, ws_normal);
|
|
|
|
// Solve position errors
|
|
if (wcp.mNonPenetrationConstraint.SolvePositionConstraintWithMassOverride(body1, constraint.mInvMass1, body2, constraint.mInvMass2, ws_normal, separation, mPhysicsSettings.mBaumgarte))
|
|
any_impulse_applied = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return any_impulse_applied;
|
|
}
|
|
|
|
void ContactConstraintManager::RecycleConstraintBuffer()
|
|
{
|
|
// Reset constraint array
|
|
mNumConstraints = 0;
|
|
}
|
|
|
|
void ContactConstraintManager::FinishConstraintBuffer()
|
|
{
|
|
// Free constraints buffer
|
|
mUpdateContext->mTempAllocator->Free(mConstraints, mMaxConstraints * sizeof(ContactConstraint));
|
|
mConstraints = nullptr;
|
|
mNumConstraints = 0;
|
|
|
|
// Reset update context
|
|
mUpdateContext = nullptr;
|
|
}
|
|
|
|
void ContactConstraintManager::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
|
|
{
|
|
mCache[mCacheWriteIdx ^ 1].SaveState(inStream, inFilter);
|
|
}
|
|
|
|
bool ContactConstraintManager::RestoreState(StateRecorder &inStream, const StateRecorderFilter *inFilter)
|
|
{
|
|
bool success = mCache[mCacheWriteIdx].RestoreState(mCache[mCacheWriteIdx ^ 1], inStream, inFilter);
|
|
|
|
// If this is the last part, the cache is finalized
|
|
if (inStream.IsLastPart())
|
|
{
|
|
mCacheWriteIdx ^= 1;
|
|
mCache[mCacheWriteIdx].Clear();
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|