godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ContactConstraintManager.cpp
2025-04-12 18:40:44 +02:00

1793 lines
70 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/ContactConstraintManager.h>
#include <Jolt/Physics/Constraints/CalculateSolverSteps.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/PhysicsUpdateContext.h>
#include <Jolt/Physics/PhysicsSettings.h>
#include <Jolt/Physics/PhysicsSystem.h>
#include <Jolt/Physics/IslandBuilder.h>
#include <Jolt/Physics/DeterminismLog.h>
#include <Jolt/Core/TempAllocator.h>
#include <Jolt/Core/QuickSort.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
using namespace literals;
#ifdef JPH_DEBUG_RENDERER
bool ContactConstraintManager::sDrawContactPoint = false;
bool ContactConstraintManager::sDrawSupportingFaces = false;
bool ContactConstraintManager::sDrawContactPointReduction = false;
bool ContactConstraintManager::sDrawContactManifolds = false;
#endif // JPH_DEBUG_RENDERER
//#define JPH_MANIFOLD_CACHE_DEBUG
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::WorldContactPoint
////////////////////////////////////////////////////////////////////////////////////////////////////////
void ContactConstraintManager::WorldContactPoint::CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal)
{
// Calculate collision points relative to body
RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
mNonPenetrationConstraint.CalculateConstraintPropertiesWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, r1, inBody2, inInvMass2, inInvInertiaScale2, r2, inWorldSpaceNormal);
}
template <EMotionType Type1, EMotionType Type2>
JPH_INLINE void ContactConstraintManager::WorldContactPoint::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, float inGravityDeltaTimeDotNormal, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution)
{
JPH_DET_LOG("TemplatedCalculateFrictionAndNonPenetrationConstraintProperties: p1: " << inWorldSpacePosition1 << " p2: " << inWorldSpacePosition2
<< " normal: " << inWorldSpaceNormal << " tangent1: " << inWorldSpaceTangent1 << " tangent2: " << inWorldSpaceTangent2
<< " restitution: " << inSettings.mCombinedRestitution << " friction: " << inSettings.mCombinedFriction << " minv: " << inMinVelocityForRestitution
<< " surface_vel: " << inSettings.mRelativeLinearSurfaceVelocity << " surface_ang: " << inSettings.mRelativeAngularSurfaceVelocity);
// Calculate collision points relative to body
RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
// The gravity is applied in the beginning of the time step. If we get here, there was a collision
// at the beginning of the time step, so we've applied too much gravity. This means that our
// calculated restitution can be too high, so when we apply restitution, we cancel the added
// velocity due to gravity.
float gravity_dt_dot_normal;
// Calculate velocity of collision points
Vec3 relative_velocity;
if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
{
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
relative_velocity = mp2->GetPointVelocityCOM(r2) - mp1->GetPointVelocityCOM(r1);
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * (mp2->GetGravityFactor() - mp1->GetGravityFactor());
}
else if constexpr (Type1 != EMotionType::Static)
{
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
relative_velocity = -mp1->GetPointVelocityCOM(r1);
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp1->GetGravityFactor();
}
else if constexpr (Type2 != EMotionType::Static)
{
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
relative_velocity = mp2->GetPointVelocityCOM(r2);
gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp2->GetGravityFactor();
}
else
{
JPH_ASSERT(false); // Static vs static makes no sense
relative_velocity = Vec3::sZero();
gravity_dt_dot_normal = 0.0f;
}
float normal_velocity = relative_velocity.Dot(inWorldSpaceNormal);
// How much the shapes are penetrating (> 0 if penetrating, < 0 if separated)
float penetration = Vec3(inWorldSpacePosition1 - inWorldSpacePosition2).Dot(inWorldSpaceNormal);
// If there is no penetration, this is a speculative contact and we will apply a bias to the contact constraint
// so that the constraint becomes relative_velocity . contact normal > -penetration / delta_time
// instead of relative_velocity . contact normal > 0
// See: GDC 2013: "Physics for Game Programmers; Continuous Collision" - Erin Catto
float speculative_contact_velocity_bias = max(0.0f, -penetration / inDeltaTime);
// Determine if the velocity is big enough for restitution
float normal_velocity_bias;
if (inSettings.mCombinedRestitution > 0.0f && normal_velocity < -inMinVelocityForRestitution)
{
// We have a velocity that is big enough for restitution. This is where speculative contacts don't work
// great as we have to decide now if we're going to apply the restitution or not. If the relative
// velocity is big enough for a hit, we apply the restitution (in the end, due to other constraints,
// the objects may actually not collide and we will have applied restitution incorrectly). Another
// artifact that occurs because of this approximation is that the object will bounce from its current
// position rather than from a position where it is touching the other object. This causes the object
// to appear to move faster for 1 frame (the opposite of time stealing).
if (normal_velocity < -speculative_contact_velocity_bias)
normal_velocity_bias = inSettings.mCombinedRestitution * (normal_velocity - gravity_dt_dot_normal);
else
// In this case we have predicted that we don't hit the other object, but if we do (due to other constraints changing velocities)
// the speculative contact will prevent penetration but will not apply restitution leading to another artifact.
normal_velocity_bias = speculative_contact_velocity_bias;
}
else
{
// No restitution. We can safely apply our contact velocity bias.
normal_velocity_bias = speculative_contact_velocity_bias;
}
mNonPenetrationConstraint.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceNormal, normal_velocity_bias);
// Calculate friction part
if (inSettings.mCombinedFriction > 0.0f)
{
// Get surface velocity relative to tangents
Vec3 ws_surface_velocity = inSettings.mRelativeLinearSurfaceVelocity + inSettings.mRelativeAngularSurfaceVelocity.Cross(r1);
float surface_velocity1 = inWorldSpaceTangent1.Dot(ws_surface_velocity);
float surface_velocity2 = inWorldSpaceTangent2.Dot(ws_surface_velocity);
// Implement friction as 2 AxisConstraintParts
mFrictionConstraint1.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent1, surface_velocity1);
mFrictionConstraint2.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent2, surface_velocity2);
}
else
{
// Turn off friction constraint
mFrictionConstraint1.Deactivate();
mFrictionConstraint2.Deactivate();
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::ContactConstraint
////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef JPH_DEBUG_RENDERER
void ContactConstraintManager::ContactConstraint::Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const
{
if (mContactPoints.empty())
return;
// Get body transforms
RMat44 transform_body1 = mBody1->GetCenterOfMassTransform();
RMat44 transform_body2 = mBody2->GetCenterOfMassTransform();
RVec3 prev_point = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints.back().mContactPoint->mPosition1);
for (const WorldContactPoint &wcp : mContactPoints)
{
// Test if any lambda from the previous frame was transferred
float radius = wcp.mNonPenetrationConstraint.GetTotalLambda() == 0.0f
&& wcp.mFrictionConstraint1.GetTotalLambda() == 0.0f
&& wcp.mFrictionConstraint2.GetTotalLambda() == 0.0f? 0.1f : 0.2f;
RVec3 next_point = transform_body1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
inRenderer->DrawMarker(next_point, Color::sCyan, radius);
inRenderer->DrawMarker(transform_body2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2), Color::sPurple, radius);
// Draw edge
inRenderer->DrawArrow(prev_point, next_point, inManifoldColor, 0.05f);
prev_point = next_point;
}
// Draw normal
RVec3 wp = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints[0].mContactPoint->mPosition1);
inRenderer->DrawArrow(wp, wp + GetWorldSpaceNormal(), Color::sRed, 0.05f);
// Get tangents
Vec3 t1, t2;
GetTangents(t1, t2);
// Draw tangents
inRenderer->DrawLine(wp, wp + t1, Color::sGreen);
inRenderer->DrawLine(wp, wp + t2, Color::sBlue);
}
#endif // JPH_DEBUG_RENDERER
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::CachedContactPoint
////////////////////////////////////////////////////////////////////////////////////////////////////////
void ContactConstraintManager::CachedContactPoint::SaveState(StateRecorder &inStream) const
{
inStream.Write(mPosition1);
inStream.Write(mPosition2);
inStream.Write(mNonPenetrationLambda);
inStream.Write(mFrictionLambda);
}
void ContactConstraintManager::CachedContactPoint::RestoreState(StateRecorder &inStream)
{
inStream.Read(mPosition1);
inStream.Read(mPosition2);
inStream.Read(mNonPenetrationLambda);
inStream.Read(mFrictionLambda);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::CachedManifold
////////////////////////////////////////////////////////////////////////////////////////////////////////
void ContactConstraintManager::CachedManifold::SaveState(StateRecorder &inStream) const
{
inStream.Write(mContactNormal);
}
void ContactConstraintManager::CachedManifold::RestoreState(StateRecorder &inStream)
{
inStream.Read(mContactNormal);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::CachedBodyPair
////////////////////////////////////////////////////////////////////////////////////////////////////////
void ContactConstraintManager::CachedBodyPair::SaveState(StateRecorder &inStream) const
{
inStream.Write(mDeltaPosition);
inStream.Write(mDeltaRotation);
}
void ContactConstraintManager::CachedBodyPair::RestoreState(StateRecorder &inStream)
{
inStream.Read(mDeltaPosition);
inStream.Read(mDeltaRotation);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager::ManifoldCache
////////////////////////////////////////////////////////////////////////////////////////////////////////
void ContactConstraintManager::ManifoldCache::Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize)
{
uint max_body_pairs = min(inMaxBodyPairs, cMaxBodyPairsLimit);
JPH_ASSERT(max_body_pairs == inMaxBodyPairs, "Cannot support this many body pairs!");
JPH_ASSERT(inMaxContactConstraints <= cMaxContactConstraintsLimit); // Should have been enforced by caller
mAllocator.Init(uint(min(uint64(max_body_pairs) * sizeof(BodyPairMap::KeyValue) + inCachedManifoldsSize, uint64(~uint(0)))));
mCachedManifolds.Init(GetNextPowerOf2(inMaxContactConstraints));
mCachedBodyPairs.Init(GetNextPowerOf2(max_body_pairs));
}
void ContactConstraintManager::ManifoldCache::Clear()
{
JPH_PROFILE_FUNCTION();
mCachedManifolds.Clear();
mCachedBodyPairs.Clear();
mAllocator.Clear();
#ifdef JPH_ENABLE_ASSERTS
// Mark as incomplete
mIsFinalized = false;
#endif
}
void ContactConstraintManager::ManifoldCache::Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
{
// Minimum amount of buckets to use in the hash map
constexpr uint32 cMinBuckets = 1024;
// Use the next higher power of 2 of amount of objects in the cache from last frame to determine the amount of buckets in this frame
mCachedManifolds.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumManifolds)), mCachedManifolds.GetMaxBuckets()));
mCachedBodyPairs.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumBodyPairs)), mCachedBodyPairs.GetMaxBuckets()));
}
const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const
{
JPH_ASSERT(mIsFinalized);
return mCachedManifolds.Find(inKey, inKeyHash);
}
ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
{
JPH_ASSERT(!mIsFinalized);
MKeyValue *kv = mCachedManifolds.Create(ioContactAllocator, inKey, inKeyHash, CachedManifold::sGetRequiredExtraSize(inNumContactPoints));
if (kv == nullptr)
{
ioContactAllocator.mErrors |= EPhysicsUpdateError::ManifoldCacheFull;
return nullptr;
}
kv->GetValue().mNumContactPoints = uint16(inNumContactPoints);
++ioContactAllocator.mNumManifolds;
return kv;
}
ContactConstraintManager::MKVAndCreated ContactConstraintManager::ManifoldCache::FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
{
MKeyValue *kv = const_cast<MKeyValue *>(mCachedManifolds.Find(inKey, inKeyHash));
if (kv != nullptr)
return { kv, false };
return { Create(ioContactAllocator, inKey, inKeyHash, inNumContactPoints), true };
}
uint32 ContactConstraintManager::ManifoldCache::ToHandle(const MKeyValue *inKeyValue) const
{
JPH_ASSERT(!mIsFinalized);
return mCachedManifolds.ToHandle(inKeyValue);
}
const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::FromHandle(uint32 inHandle) const
{
JPH_ASSERT(mIsFinalized);
return mCachedManifolds.FromHandle(inHandle);
}
const ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Find(const BodyPair &inKey, uint64 inKeyHash) const
{
JPH_ASSERT(mIsFinalized);
return mCachedBodyPairs.Find(inKey, inKeyHash);
}
ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash)
{
JPH_ASSERT(!mIsFinalized);
BPKeyValue *kv = mCachedBodyPairs.Create(ioContactAllocator, inKey, inKeyHash, 0);
if (kv == nullptr)
{
ioContactAllocator.mErrors |= EPhysicsUpdateError::BodyPairCacheFull;
return nullptr;
}
++ioContactAllocator.mNumBodyPairs;
return kv;
}
void ContactConstraintManager::ManifoldCache::GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const
{
JPH_ASSERT(mIsFinalized);
mCachedBodyPairs.GetAllKeyValues(outAll);
// Sort by key
QuickSort(outAll.begin(), outAll.end(), [](const BPKeyValue *inLHS, const BPKeyValue *inRHS) {
return inLHS->GetKey() < inRHS->GetKey();
});
}
void ContactConstraintManager::ManifoldCache::GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const
{
JPH_ASSERT(mIsFinalized);
// Iterate through the attached manifolds
for (uint32 handle = inBodyPair.mFirstCachedManifold; handle != ManifoldMap::cInvalidHandle; handle = FromHandle(handle)->GetValue().mNextWithSameBodyPair)
{
const MKeyValue *kv = mCachedManifolds.FromHandle(handle);
outAll.push_back(kv);
}
// Sort by key
QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
return inLHS->GetKey() < inRHS->GetKey();
});
}
void ContactConstraintManager::ManifoldCache::GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const
{
mCachedManifolds.GetAllKeyValues(outAll);
for (int i = (int)outAll.size() - 1; i >= 0; --i)
if ((outAll[i]->GetValue().mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0)
{
outAll[i] = outAll.back();
outAll.pop_back();
}
// Sort by key
QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
return inLHS->GetKey() < inRHS->GetKey();
});
}
void ContactConstraintManager::ManifoldCache::ContactPointRemovedCallbacks(ContactListener *inListener)
{
JPH_PROFILE_FUNCTION();
for (MKeyValue &kv : mCachedManifolds)
if ((kv.GetValue().mFlags & uint16(CachedManifold::EFlags::ContactPersisted)) == 0)
inListener->OnContactRemoved(kv.GetKey());
}
#ifdef JPH_ENABLE_ASSERTS
void ContactConstraintManager::ManifoldCache::Finalize()
{
mIsFinalized = true;
#ifdef JPH_MANIFOLD_CACHE_DEBUG
Trace("ManifoldMap:");
mCachedManifolds.TraceStats();
Trace("BodyPairMap:");
mCachedBodyPairs.TraceStats();
#endif // JPH_MANIFOLD_CACHE_DEBUG
}
#endif
void ContactConstraintManager::ManifoldCache::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
{
JPH_ASSERT(mIsFinalized);
// Get contents of cache
Array<const BPKeyValue *> all_bp;
GetAllBodyPairsSorted(all_bp);
// Determine which ones to save
Array<const BPKeyValue *> selected_bp;
if (inFilter == nullptr)
selected_bp = std::move(all_bp);
else
{
selected_bp.reserve(all_bp.size());
for (const BPKeyValue *bp_kv : all_bp)
if (inFilter->ShouldSaveContact(bp_kv->GetKey().mBodyA, bp_kv->GetKey().mBodyB))
selected_bp.push_back(bp_kv);
}
// Write body pairs
uint32 num_body_pairs = uint32(selected_bp.size());
inStream.Write(num_body_pairs);
for (const BPKeyValue *bp_kv : selected_bp)
{
// Write body pair key
inStream.Write(bp_kv->GetKey());
// Write body pair
const CachedBodyPair &bp = bp_kv->GetValue();
bp.SaveState(inStream);
// Get attached manifolds
Array<const MKeyValue *> all_m;
GetAllManifoldsSorted(bp, all_m);
// Write num manifolds
uint32 num_manifolds = uint32(all_m.size());
inStream.Write(num_manifolds);
// Write all manifolds
for (const MKeyValue *m_kv : all_m)
{
// Write key
inStream.Write(m_kv->GetKey());
const CachedManifold &cm = m_kv->GetValue();
JPH_ASSERT((cm.mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0);
// Write amount of contacts
inStream.Write(cm.mNumContactPoints);
// Write manifold
cm.SaveState(inStream);
// Write contact points
for (uint32 i = 0; i < cm.mNumContactPoints; ++i)
cm.mContactPoints[i].SaveState(inStream);
}
}
// Get CCD manifolds
Array<const MKeyValue *> all_m;
GetAllCCDManifoldsSorted(all_m);
// Determine which ones to save
Array<const MKeyValue *> selected_m;
if (inFilter == nullptr)
selected_m = std::move(all_m);
else
{
selected_m.reserve(all_m.size());
for (const MKeyValue *m_kv : all_m)
if (inFilter->ShouldSaveContact(m_kv->GetKey().GetBody1ID(), m_kv->GetKey().GetBody2ID()))
selected_m.push_back(m_kv);
}
// Write all CCD manifold keys
uint32 num_manifolds = uint32(selected_m.size());
inStream.Write(num_manifolds);
for (const MKeyValue *m_kv : selected_m)
inStream.Write(m_kv->GetKey());
}
bool ContactConstraintManager::ManifoldCache::RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream, const StateRecorderFilter *inFilter)
{
JPH_ASSERT(!mIsFinalized);
bool success = true;
// Create a contact allocator for restoring the contact cache
ContactAllocator contact_allocator(GetContactAllocator());
// When validating, get all existing body pairs
Array<const BPKeyValue *> all_bp;
if (inStream.IsValidating())
inReadCache.GetAllBodyPairsSorted(all_bp);
// Read amount of body pairs
uint32 num_body_pairs;
if (inStream.IsValidating())
num_body_pairs = uint32(all_bp.size());
inStream.Read(num_body_pairs);
// Read entire cache
for (uint32 i = 0; i < num_body_pairs; ++i)
{
// Read key
BodyPair body_pair_key;
if (inStream.IsValidating() && i < all_bp.size())
body_pair_key = all_bp[i]->GetKey();
inStream.Read(body_pair_key);
// Check if we want to restore this contact
if (inFilter == nullptr || inFilter->ShouldRestoreContact(body_pair_key.mBodyA, body_pair_key.mBodyB))
{
// Create new entry for this body pair
uint64 body_pair_hash = body_pair_key.GetHash();
BPKeyValue *bp_kv = Create(contact_allocator, body_pair_key, body_pair_hash);
if (bp_kv == nullptr)
{
// Out of cache space
success = false;
break;
}
CachedBodyPair &bp = bp_kv->GetValue();
// Read body pair
if (inStream.IsValidating() && i < all_bp.size())
memcpy(&bp, &all_bp[i]->GetValue(), sizeof(CachedBodyPair));
bp.RestoreState(inStream);
// When validating, get all existing manifolds
Array<const MKeyValue *> all_m;
if (inStream.IsValidating())
inReadCache.GetAllManifoldsSorted(all_bp[i]->GetValue(), all_m);
// Read amount of manifolds
uint32 num_manifolds = 0;
if (inStream.IsValidating())
num_manifolds = uint32(all_m.size());
inStream.Read(num_manifolds);
uint32 handle = ManifoldMap::cInvalidHandle;
for (uint32 j = 0; j < num_manifolds; ++j)
{
// Read key
SubShapeIDPair sub_shape_key;
if (inStream.IsValidating() && j < all_m.size())
sub_shape_key = all_m[j]->GetKey();
inStream.Read(sub_shape_key);
uint64 sub_shape_key_hash = sub_shape_key.GetHash();
// Read amount of contact points
uint16 num_contact_points = 0;
if (inStream.IsValidating() && j < all_m.size())
num_contact_points = all_m[j]->GetValue().mNumContactPoints;
inStream.Read(num_contact_points);
// Read manifold
MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, num_contact_points);
if (m_kv == nullptr)
{
// Out of cache space
success = false;
break;
}
CachedManifold &cm = m_kv->GetValue();
if (inStream.IsValidating() && j < all_m.size())
{
memcpy(&cm, &all_m[j]->GetValue(), CachedManifold::sGetRequiredTotalSize(num_contact_points));
cm.mNumContactPoints = uint16(num_contact_points); // Restore num contact points
}
cm.RestoreState(inStream);
cm.mNextWithSameBodyPair = handle;
handle = ToHandle(m_kv);
// Read contact points
for (uint32 k = 0; k < num_contact_points; ++k)
cm.mContactPoints[k].RestoreState(inStream);
}
bp.mFirstCachedManifold = handle;
}
else
{
// Skip the contact
CachedBodyPair bp;
bp.RestoreState(inStream);
uint32 num_manifolds = 0;
inStream.Read(num_manifolds);
for (uint32 j = 0; j < num_manifolds; ++j)
{
SubShapeIDPair sub_shape_key;
inStream.Read(sub_shape_key);
uint16 num_contact_points;
inStream.Read(num_contact_points);
CachedManifold cm;
cm.RestoreState(inStream);
for (uint32 k = 0; k < num_contact_points; ++k)
cm.mContactPoints[0].RestoreState(inStream);
}
}
}
// When validating, get all existing CCD manifolds
Array<const MKeyValue *> all_m;
if (inStream.IsValidating())
inReadCache.GetAllCCDManifoldsSorted(all_m);
// Read amount of CCD manifolds
uint32 num_manifolds;
if (inStream.IsValidating())
num_manifolds = uint32(all_m.size());
inStream.Read(num_manifolds);
for (uint32 j = 0; j < num_manifolds; ++j)
{
// Read key
SubShapeIDPair sub_shape_key;
if (inStream.IsValidating() && j < all_m.size())
sub_shape_key = all_m[j]->GetKey();
inStream.Read(sub_shape_key);
// Check if we want to restore this contact
if (inFilter == nullptr || inFilter->ShouldRestoreContact(sub_shape_key.GetBody1ID(), sub_shape_key.GetBody2ID()))
{
// Create CCD manifold
uint64 sub_shape_key_hash = sub_shape_key.GetHash();
MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, 0);
if (m_kv == nullptr)
{
// Out of cache space
success = false;
break;
}
CachedManifold &cm = m_kv->GetValue();
cm.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
}
}
#ifdef JPH_ENABLE_ASSERTS
// We don't finalize until the last part is restored
if (inStream.IsLastPart())
mIsFinalized = true;
#endif
return success;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////
// ContactConstraintManager
////////////////////////////////////////////////////////////////////////////////////////////////////////
ContactConstraintManager::ContactConstraintManager(const PhysicsSettings &inPhysicsSettings) :
mPhysicsSettings(inPhysicsSettings)
{
#ifdef JPH_ENABLE_ASSERTS
// For the first frame mark this empty buffer as finalized
mCache[mCacheWriteIdx ^ 1].Finalize();
#endif
}
ContactConstraintManager::~ContactConstraintManager()
{
JPH_ASSERT(mConstraints == nullptr);
}
void ContactConstraintManager::Init(uint inMaxBodyPairs, uint inMaxContactConstraints)
{
// Limit the number of constraints so that the allocation size fits in an unsigned integer
mMaxConstraints = min(inMaxContactConstraints, cMaxContactConstraintsLimit);
JPH_ASSERT(mMaxConstraints == inMaxContactConstraints, "Cannot support this many contact constraints!");
// Calculate worst case cache usage
constexpr uint cMaxManifoldSizePerConstraint = sizeof(CachedManifold) + (MaxContactPoints - 1) * sizeof(CachedContactPoint);
static_assert(cMaxManifoldSizePerConstraint < sizeof(ContactConstraint)); // If not true, then the next line can overflow
uint cached_manifolds_size = mMaxConstraints * cMaxManifoldSizePerConstraint;
// Init the caches
mCache[0].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
mCache[1].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
}
void ContactConstraintManager::PrepareConstraintBuffer(PhysicsUpdateContext *inContext)
{
// Store context
mUpdateContext = inContext;
// Allocate temporary constraint buffer
JPH_ASSERT(mConstraints == nullptr);
mConstraints = (ContactConstraint *)inContext->mTempAllocator->Allocate(mMaxConstraints * sizeof(ContactConstraint));
}
template <EMotionType Type1, EMotionType Type2>
JPH_INLINE void ContactConstraintManager::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
{
// Calculate scaled mass and inertia
Mat44 inv_i1;
if constexpr (Type1 == EMotionType::Dynamic)
{
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
inv_i1 = inSettings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inTransformBody1.GetRotation());
}
else
{
inv_i1 = Mat44::sZero();
}
Mat44 inv_i2;
if constexpr (Type2 == EMotionType::Dynamic)
{
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
inv_i2 = inSettings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inTransformBody2.GetRotation());
}
else
{
inv_i2 = Mat44::sZero();
}
// Calculate tangents
Vec3 t1, t2;
ioConstraint.GetTangents(t1, t2);
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
// Calculate value for restitution correction
float gravity_dt_dot_normal = inGravityDeltaTime.Dot(ws_normal);
// Setup velocity constraint properties
float min_velocity_for_restitution = mPhysicsSettings.mMinVelocityForRestitution;
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
{
RVec3 p1 = inTransformBody1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
RVec3 p2 = inTransformBody2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(inDeltaTime, gravity_dt_dot_normal, inBody1, inBody2, ioConstraint.mInvMass1, ioConstraint.mInvMass2, inv_i1, inv_i2, p1, p2, ws_normal, t1, t2, inSettings, min_velocity_for_restitution);
}
}
inline void ContactConstraintManager::CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
{
// Dispatch to the correct templated form
switch (inBody1.GetMotionType())
{
case EMotionType::Dynamic:
switch (inBody2.GetMotionType())
{
case EMotionType::Dynamic:
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
break;
case EMotionType::Kinematic:
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Kinematic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
break;
case EMotionType::Static:
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Static>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
break;
default:
JPH_ASSERT(false);
break;
}
break;
case EMotionType::Kinematic:
JPH_ASSERT(inBody2.IsDynamic());
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Kinematic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
break;
case EMotionType::Static:
JPH_ASSERT(inBody2.IsDynamic());
TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Static, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
break;
default:
JPH_ASSERT(false);
break;
}
}
void ContactConstraintManager::GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated)
{
JPH_PROFILE_FUNCTION();
// Start with nothing found and not handled
outConstraintCreated = false;
outPairHandled = false;
// Swap bodies so that body 1 id < body 2 id
Body *body1, *body2;
if (inBody1.GetID() < inBody2.GetID())
{
body1 = &inBody1;
body2 = &inBody2;
}
else
{
body1 = &inBody2;
body2 = &inBody1;
}
// Find the cached body pair
BodyPair body_pair_key(body1->GetID(), body2->GetID());
uint64 body_pair_hash = body_pair_key.GetHash();
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
const BPKeyValue *kv = read_cache.Find(body_pair_key, body_pair_hash);
if (kv == nullptr)
return;
const CachedBodyPair &input_cbp = kv->GetValue();
// Get relative translation
Quat inv_r1 = body1->GetRotation().Conjugated();
Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
// Get old position delta
Vec3 old_delta_position = Vec3::sLoadFloat3Unsafe(input_cbp.mDeltaPosition);
// Check if bodies are still roughly in the same relative position
if ((delta_position - old_delta_position).LengthSq() > mPhysicsSettings.mBodyPairCacheMaxDeltaPositionSq)
return;
// Determine relative orientation
Quat delta_rotation = inv_r1 * body2->GetRotation();
// Reconstruct old quaternion delta
Quat old_delta_rotation = Quat::sLoadFloat3Unsafe(input_cbp.mDeltaRotation);
// Check if bodies are still roughly in the same relative orientation
// The delta between 2 quaternions p and q is: p q^* = [rotation_axis * sin(angle / 2), cos(angle / 2)]
// From the W component we can extract the angle: cos(angle / 2) = px * qx + py * qy + pz * qz + pw * qw = p . q
// Since we want to abort if the rotation is smaller than -angle or bigger than angle, we can write the comparison as |p . q| < cos(angle / 2)
if (abs(delta_rotation.Dot(old_delta_rotation)) < mPhysicsSettings.mBodyPairCacheCosMaxDeltaRotationDiv2)
return;
// The cache is valid, return that we've handled this body pair
outPairHandled = true;
// Copy the cached body pair to this frame
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
BPKeyValue *output_bp_kv = write_cache.Create(ioContactAllocator, body_pair_key, body_pair_hash);
if (output_bp_kv == nullptr)
return; // Out of cache space
CachedBodyPair *output_cbp = &output_bp_kv->GetValue();
memcpy(output_cbp, &input_cbp, sizeof(CachedBodyPair));
// If there were no contacts, we have handled the contact
if (input_cbp.mFirstCachedManifold == ManifoldMap::cInvalidHandle)
return;
// Get body transforms
RMat44 transform_body1 = body1->GetCenterOfMassTransform();
RMat44 transform_body2 = body2->GetCenterOfMassTransform();
// Get time step
float delta_time = mUpdateContext->mStepDeltaTime;
// Calculate value for restitution correction
Vec3 gravity_dt = mUpdateContext->mPhysicsSystem->GetGravity() * delta_time;
// Copy manifolds
uint32 output_handle = ManifoldMap::cInvalidHandle;
uint32 input_handle = input_cbp.mFirstCachedManifold;
do
{
JPH_PROFILE("Add Constraint From Cached Manifold");
// Find the existing manifold
const MKeyValue *input_kv = read_cache.FromHandle(input_handle);
const SubShapeIDPair &input_key = input_kv->GetKey();
const CachedManifold &input_cm = input_kv->GetValue();
JPH_ASSERT(input_cm.mNumContactPoints > 0); // There should be contact points in this manifold!
// Create room for manifold in write buffer and copy data
uint64 input_hash = input_key.GetHash();
MKeyValue *output_kv = write_cache.Create(ioContactAllocator, input_key, input_hash, input_cm.mNumContactPoints);
if (output_kv == nullptr)
break; // Out of cache space
CachedManifold *output_cm = &output_kv->GetValue();
memcpy(output_cm, &input_cm, CachedManifold::sGetRequiredTotalSize(input_cm.mNumContactPoints));
// Link the object under the body pairs
output_cm->mNextWithSameBodyPair = output_handle;
output_handle = write_cache.ToHandle(output_kv);
// Calculate default contact settings
ContactSettings settings;
settings.mCombinedFriction = mCombineFriction(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
settings.mCombinedRestitution = mCombineRestitution(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
settings.mIsSensor = body1->IsSensor() || body2->IsSensor();
// Calculate world space contact normal
Vec3 world_space_normal = transform_body2.Multiply3x3(Vec3::sLoadFloat3Unsafe(output_cm->mContactNormal)).Normalized();
// Call contact listener to update settings
if (mContactListener != nullptr)
{
// Convert constraint to manifold structure for callback
ContactManifold manifold;
manifold.mWorldSpaceNormal = world_space_normal;
manifold.mSubShapeID1 = input_key.GetSubShapeID1();
manifold.mSubShapeID2 = input_key.GetSubShapeID2();
manifold.mBaseOffset = transform_body1.GetTranslation();
manifold.mRelativeContactPointsOn1.resize(output_cm->mNumContactPoints);
manifold.mRelativeContactPointsOn2.resize(output_cm->mNumContactPoints);
Mat44 local_transform_body2 = transform_body2.PostTranslated(-manifold.mBaseOffset).ToMat44();
float penetration_depth = -FLT_MAX;
for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
{
const CachedContactPoint &ccp = output_cm->mContactPoints[i];
manifold.mRelativeContactPointsOn1[i] = transform_body1.Multiply3x3(Vec3::sLoadFloat3Unsafe(ccp.mPosition1));
manifold.mRelativeContactPointsOn2[i] = local_transform_body2 * Vec3::sLoadFloat3Unsafe(ccp.mPosition2);
penetration_depth = max(penetration_depth, (manifold.mRelativeContactPointsOn1[0] - manifold.mRelativeContactPointsOn2[0]).Dot(world_space_normal));
}
manifold.mPenetrationDepth = penetration_depth; // We don't have the penetration depth anymore, estimate it
// Notify callback
mContactListener->OnContactPersisted(*body1, *body2, manifold, settings);
}
JPH_ASSERT(settings.mIsSensor || !(body1->IsSensor() || body2->IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
if (!settings.mIsSensor // If one of the bodies is a sensor, don't actually create the constraint
&& ((body1->IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
|| (body2->IsDynamic() && settings.mInvMassScale2 != 0.0f)))
{
// Add contact constraint in world space for the solver
uint32 constraint_idx = mNumConstraints++;
if (constraint_idx >= mMaxConstraints)
{
ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
break;
}
// A constraint will be created
outConstraintCreated = true;
ContactConstraint &constraint = mConstraints[constraint_idx];
new (&constraint) ContactConstraint();
constraint.mBody1 = body1;
constraint.mBody2 = body2;
constraint.mSortKey = input_hash;
world_space_normal.StoreFloat3(&constraint.mWorldSpaceNormal);
constraint.mCombinedFriction = settings.mCombinedFriction;
constraint.mInvMass1 = body1->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * body1->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
constraint.mInvMass2 = body2->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * body2->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
constraint.mContactPoints.resize(output_cm->mNumContactPoints);
for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
{
CachedContactPoint &ccp = output_cm->mContactPoints[i];
WorldContactPoint &wcp = constraint.mContactPoints[i];
wcp.mNonPenetrationConstraint.SetTotalLambda(ccp.mNonPenetrationLambda);
wcp.mFrictionConstraint1.SetTotalLambda(ccp.mFrictionLambda[0]);
wcp.mFrictionConstraint2.SetTotalLambda(ccp.mFrictionLambda[1]);
wcp.mContactPoint = &ccp;
}
JPH_DET_LOG("GetContactsFromCache: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
// Calculate friction and non-penetration constraint properties for all contact points
CalculateFrictionAndNonPenetrationConstraintProperties(constraint, settings, delta_time, gravity_dt, transform_body1, transform_body2, *body1, *body2);
// Notify island builder
mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
#ifdef JPH_DEBUG_RENDERER
// Draw the manifold
if (sDrawContactManifolds)
constraint.Draw(DebugRenderer::sInstance, Color::sYellow);
#endif // JPH_DEBUG_RENDERER
}
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
input_cm.mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
// Fetch the next manifold
input_handle = input_cm.mNextWithSameBodyPair;
}
while (input_handle != ManifoldMap::cInvalidHandle);
output_cbp->mFirstCachedManifold = output_handle;
}
ContactConstraintManager::BodyPairHandle ContactConstraintManager::AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2)
{
JPH_PROFILE_FUNCTION();
// Swap bodies so that body 1 id < body 2 id
const Body *body1, *body2;
if (inBody1.GetID() < inBody2.GetID())
{
body1 = &inBody1;
body2 = &inBody2;
}
else
{
body1 = &inBody2;
body2 = &inBody1;
}
// Add an entry
BodyPair body_pair_key(body1->GetID(), body2->GetID());
uint64 body_pair_hash = body_pair_key.GetHash();
BPKeyValue *body_pair_kv = mCache[mCacheWriteIdx].Create(ioContactAllocator, body_pair_key, body_pair_hash);
if (body_pair_kv == nullptr)
return nullptr; // Out of cache space
CachedBodyPair *cbp = &body_pair_kv->GetValue();
cbp->mFirstCachedManifold = ManifoldMap::cInvalidHandle;
// Get relative translation
Quat inv_r1 = body1->GetRotation().Conjugated();
Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
// Store it
delta_position.StoreFloat3(&cbp->mDeltaPosition);
// Determine relative orientation
Quat delta_rotation = inv_r1 * body2->GetRotation();
// Store it
delta_rotation.StoreFloat3(&cbp->mDeltaRotation);
return cbp;
}
template <EMotionType Type1, EMotionType Type2>
bool ContactConstraintManager::TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
{
// Calculate hash
SubShapeIDPair key { inBody1.GetID(), inManifold.mSubShapeID1, inBody2.GetID(), inManifold.mSubShapeID2 };
uint64 key_hash = key.GetHash();
// Determine number of contact points
int num_contact_points = (int)inManifold.mRelativeContactPointsOn1.size();
JPH_ASSERT(num_contact_points <= MaxContactPoints);
JPH_ASSERT(num_contact_points == (int)inManifold.mRelativeContactPointsOn2.size());
// Reserve space for new contact cache entry
// Note that for dynamic vs dynamic we always require the first body to have a lower body id to get a consistent key
// under which to look up the contact
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
MKeyValue *new_manifold_kv = write_cache.Create(ioContactAllocator, key, key_hash, num_contact_points);
if (new_manifold_kv == nullptr)
return false; // Out of cache space
CachedManifold *new_manifold = &new_manifold_kv->GetValue();
// Transform the world space normal to the space of body 2 (this is usually the static body)
RMat44 inverse_transform_body2 = inBody2.GetInverseCenterOfMassTransform();
inverse_transform_body2.Multiply3x3(inManifold.mWorldSpaceNormal).Normalized().StoreFloat3(&new_manifold->mContactNormal);
// Settings object that gets passed to the callback
ContactSettings settings;
settings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
settings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
settings.mIsSensor = inBody1.IsSensor() || inBody2.IsSensor();
// Get the contact points for the old cache entry
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
const CachedContactPoint *ccp_start;
const CachedContactPoint *ccp_end;
if (old_manifold_kv != nullptr)
{
// Call point persisted listener
if (mContactListener != nullptr)
mContactListener->OnContactPersisted(inBody1, inBody2, inManifold, settings);
// Fetch the contact points from the old manifold
const CachedManifold *old_manifold = &old_manifold_kv->GetValue();
ccp_start = old_manifold->mContactPoints;
ccp_end = ccp_start + old_manifold->mNumContactPoints;
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
old_manifold->mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
}
else
{
// Call point added listener
if (mContactListener != nullptr)
mContactListener->OnContactAdded(inBody1, inBody2, inManifold, settings);
// No contact points available from old manifold
ccp_start = nullptr;
ccp_end = nullptr;
}
// Get inverse transform for body 1
RMat44 inverse_transform_body1 = inBody1.GetInverseCenterOfMassTransform();
bool contact_constraint_created = false;
// If one of the bodies is a sensor, don't actually create the constraint
JPH_ASSERT(settings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
if (!settings.mIsSensor
&& ((inBody1.IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
|| (inBody2.IsDynamic() && settings.mInvMassScale2 != 0.0f)))
{
// Add contact constraint
uint32 constraint_idx = mNumConstraints++;
if (constraint_idx >= mMaxConstraints)
{
ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
// Manifold has been created already, we're not filling it in, so we need to reset the contact number of points.
// Note that we don't hook it up to the body pair cache so that it won't be used as a cache during the next simulation.
new_manifold->mNumContactPoints = 0;
return false;
}
// We will create a contact constraint
contact_constraint_created = true;
ContactConstraint &constraint = mConstraints[constraint_idx];
new (&constraint) ContactConstraint();
constraint.mBody1 = &inBody1;
constraint.mBody2 = &inBody2;
constraint.mSortKey = key_hash;
inManifold.mWorldSpaceNormal.StoreFloat3(&constraint.mWorldSpaceNormal);
constraint.mCombinedFriction = settings.mCombinedFriction;
constraint.mInvMass1 = inBody1.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
constraint.mInvMass2 = inBody2.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
JPH_DET_LOG("TemplatedAddContactConstraint: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
// Notify island builder
mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, inBody1.GetIndexInActiveBodiesInternal(), inBody2.GetIndexInActiveBodiesInternal());
// Get time step
float delta_time = mUpdateContext->mStepDeltaTime;
// Calculate value for restitution correction
float gravity_dt_dot_normal = inManifold.mWorldSpaceNormal.Dot(mUpdateContext->mPhysicsSystem->GetGravity() * delta_time);
// Calculate scaled mass and inertia
float inv_m1;
Mat44 inv_i1;
if constexpr (Type1 == EMotionType::Dynamic)
{
const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
inv_m1 = settings.mInvMassScale1 * mp1->GetInverseMass();
inv_i1 = settings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inverse_transform_body1.Transposed3x3());
}
else
{
inv_m1 = 0.0f;
inv_i1 = Mat44::sZero();
}
float inv_m2;
Mat44 inv_i2;
if constexpr (Type2 == EMotionType::Dynamic)
{
const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
inv_m2 = settings.mInvMassScale2 * mp2->GetInverseMass();
inv_i2 = settings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inverse_transform_body2.Transposed3x3());
}
else
{
inv_m2 = 0.0f;
inv_i2 = Mat44::sZero();
}
// Calculate tangents
Vec3 t1, t2;
constraint.GetTangents(t1, t2);
constraint.mContactPoints.resize(num_contact_points);
for (int i = 0; i < num_contact_points; ++i)
{
// Convert to world space and set positions
WorldContactPoint &wcp = constraint.mContactPoints[i];
RVec3 p1_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i];
RVec3 p2_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i];
// Convert to local space to the body
Vec3 p1_ls = Vec3(inverse_transform_body1 * p1_ws);
Vec3 p2_ls = Vec3(inverse_transform_body2 * p2_ws);
// Check if we have a close contact point from last update
bool lambda_set = false;
for (const CachedContactPoint *ccp = ccp_start; ccp < ccp_end; ccp++)
if (Vec3::sLoadFloat3Unsafe(ccp->mPosition1).IsClose(p1_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq)
&& Vec3::sLoadFloat3Unsafe(ccp->mPosition2).IsClose(p2_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq))
{
// Get lambdas from previous frame
wcp.mNonPenetrationConstraint.SetTotalLambda(ccp->mNonPenetrationLambda);
wcp.mFrictionConstraint1.SetTotalLambda(ccp->mFrictionLambda[0]);
wcp.mFrictionConstraint2.SetTotalLambda(ccp->mFrictionLambda[1]);
lambda_set = true;
break;
}
if (!lambda_set)
{
wcp.mNonPenetrationConstraint.SetTotalLambda(0.0f);
wcp.mFrictionConstraint1.SetTotalLambda(0.0f);
wcp.mFrictionConstraint2.SetTotalLambda(0.0f);
}
// Create new contact point
CachedContactPoint &cp = new_manifold->mContactPoints[i];
p1_ls.StoreFloat3(&cp.mPosition1);
p2_ls.StoreFloat3(&cp.mPosition2);
wcp.mContactPoint = &cp;
// Setup velocity constraint
wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(delta_time, gravity_dt_dot_normal, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1_ws, p2_ws, inManifold.mWorldSpaceNormal, t1, t2, settings, mPhysicsSettings.mMinVelocityForRestitution);
}
#ifdef JPH_DEBUG_RENDERER
// Draw the manifold
if (sDrawContactManifolds)
constraint.Draw(DebugRenderer::sInstance, Color::sOrange);
#endif // JPH_DEBUG_RENDERER
}
else
{
// Store the contact manifold in the cache
for (int i = 0; i < num_contact_points; ++i)
{
// Convert to local space to the body
Vec3 p1 = Vec3(inverse_transform_body1 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i]));
Vec3 p2 = Vec3(inverse_transform_body2 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i]));
// Create new contact point
CachedContactPoint &cp = new_manifold->mContactPoints[i];
p1.StoreFloat3(&cp.mPosition1);
p2.StoreFloat3(&cp.mPosition2);
// Reset contact impulses, we haven't applied any
cp.mNonPenetrationLambda = 0.0f;
cp.mFrictionLambda[0] = 0.0f;
cp.mFrictionLambda[1] = 0.0f;
}
}
// Store cached contact point in body pair cache
CachedBodyPair *cbp = reinterpret_cast<CachedBodyPair *>(inBodyPairHandle);
new_manifold->mNextWithSameBodyPair = cbp->mFirstCachedManifold;
cbp->mFirstCachedManifold = write_cache.ToHandle(new_manifold_kv);
// A contact constraint was added
return contact_constraint_created;
}
bool ContactConstraintManager::AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
{
JPH_PROFILE_FUNCTION();
JPH_DET_LOG("AddContactConstraint: id1: " << inBody1.GetID() << " id2: " << inBody2.GetID()
<< " subshape1: " << inManifold.mSubShapeID1 << " subshape2: " << inManifold.mSubShapeID2
<< " normal: " << inManifold.mWorldSpaceNormal << " pendepth: " << inManifold.mPenetrationDepth);
JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
// Swap bodies so that body 1 id < body 2 id
const ContactManifold *manifold;
Body *body1, *body2;
ContactManifold temp;
if (inBody2.GetID() < inBody1.GetID())
{
body1 = &inBody2;
body2 = &inBody1;
temp = inManifold.SwapShapes();
manifold = &temp;
}
else
{
body1 = &inBody1;
body2 = &inBody2;
manifold = &inManifold;
}
// Dispatch to the correct templated form
// Note: Non-dynamic vs non-dynamic can happen in this case due to one body being a sensor, so we need to have an extended switch case here
switch (body1->GetMotionType())
{
case EMotionType::Dynamic:
{
switch (body2->GetMotionType())
{
case EMotionType::Dynamic:
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Kinematic:
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Static:
return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
default:
JPH_ASSERT(false);
break;
}
break;
}
case EMotionType::Kinematic:
switch (body2->GetMotionType())
{
case EMotionType::Dynamic:
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Kinematic:
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Static:
return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
default:
JPH_ASSERT(false);
break;
}
break;
case EMotionType::Static:
switch (body2->GetMotionType())
{
case EMotionType::Dynamic:
return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Kinematic:
return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
case EMotionType::Static: // Static vs static not possible
default:
JPH_ASSERT(false);
break;
}
break;
default:
JPH_ASSERT(false);
break;
}
return false;
}
void ContactConstraintManager::OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings)
{
JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
// Calculate contact settings
outSettings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
outSettings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
outSettings.mIsSensor = false; // For now, no sensors are supported during CCD
// The remainder of this function only deals with calling contact callbacks, if there's no contact callback we also don't need to do this work
if (mContactListener != nullptr)
{
// Swap bodies so that body 1 id < body 2 id
const ContactManifold *manifold;
const Body *body1, *body2;
ContactManifold temp;
if (inBody2.GetID() < inBody1.GetID())
{
body1 = &inBody2;
body2 = &inBody1;
temp = inManifold.SwapShapes();
manifold = &temp;
}
else
{
body1 = &inBody1;
body2 = &inBody2;
manifold = &inManifold;
}
// Calculate hash
SubShapeIDPair key { body1->GetID(), manifold->mSubShapeID1, body2->GetID(), manifold->mSubShapeID2 };
uint64 key_hash = key.GetHash();
// Check if we already created this contact this physics update
ManifoldCache &write_cache = mCache[mCacheWriteIdx];
MKVAndCreated new_manifold_kv = write_cache.FindOrCreate(ioContactAllocator, key, key_hash, 0);
if (new_manifold_kv.second)
{
// This contact is new for this physics update, check if previous update we already had this contact.
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
if (old_manifold_kv == nullptr)
{
// New contact
mContactListener->OnContactAdded(*body1, *body2, *manifold, outSettings);
}
else
{
// Existing contact
mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
// Mark contact as persisted so that we won't fire OnContactRemoved callbacks
old_manifold_kv->GetValue().mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
}
// Check if the cache is full
if (new_manifold_kv.first != nullptr)
{
// We don't store any contact points in this manifold as it is not for caching impulses, we only need to know that the contact was created
CachedManifold &new_manifold = new_manifold_kv.first->GetValue();
new_manifold.mContactNormal = { 0, 0, 0 };
new_manifold.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
}
}
else
{
// Already found this contact this physics update.
// Note that we can trigger OnContactPersisted multiple times per physics update, but otherwise we have no way of obtaining the settings
mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
}
// If we swapped body1 and body2 we need to swap the mass scales back
if (manifold == &temp)
{
std::swap(outSettings.mInvMassScale1, outSettings.mInvMassScale2);
std::swap(outSettings.mInvInertiaScale1, outSettings.mInvInertiaScale2);
// Note we do not need to negate the relative surface velocity as it is not applied by the CCD collision constraint
}
}
JPH_ASSERT(outSettings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
}
void ContactConstraintManager::SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const
{
JPH_PROFILE_FUNCTION();
QuickSort(inConstraintIdxBegin, inConstraintIdxEnd, [this](uint32 inLHS, uint32 inRHS) {
const ContactConstraint &lhs = mConstraints[inLHS];
const ContactConstraint &rhs = mConstraints[inRHS];
// Most of the time the sort key will be different so we sort on that
if (lhs.mSortKey != rhs.mSortKey)
return lhs.mSortKey < rhs.mSortKey;
// If they're equal we use the IDs of body 1 to order
if (lhs.mBody1 != rhs.mBody1)
return lhs.mBody1->GetID() < rhs.mBody1->GetID();
// If they're still equal we use the IDs of body 2 to order
if (lhs.mBody2 != rhs.mBody2)
return lhs.mBody2->GetID() < rhs.mBody2->GetID();
JPH_ASSERT(inLHS == inRHS, "Hash collision, ordering will be inconsistent");
return false;
});
}
void ContactConstraintManager::FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
{
JPH_PROFILE_FUNCTION();
#ifdef JPH_ENABLE_ASSERTS
// Mark cache as finalized
ManifoldCache &old_write_cache = mCache[mCacheWriteIdx];
old_write_cache.Finalize();
// Check that the count of body pairs and manifolds that we tracked outside of the cache (to avoid contention on an atomic) is correct
JPH_ASSERT(old_write_cache.GetNumBodyPairs() == inExpectedNumBodyPairs);
JPH_ASSERT(old_write_cache.GetNumManifolds() == inExpectedNumManifolds);
#endif
// Buffers are now complete, make write buffer the read buffer
mCacheWriteIdx ^= 1;
// Get the old read cache / new write cache
ManifoldCache &old_read_cache = mCache[mCacheWriteIdx];
// Call the contact point removal callbacks
if (mContactListener != nullptr)
old_read_cache.ContactPointRemovedCallbacks(mContactListener);
// We're done with the old read cache now
old_read_cache.Clear();
// Use the amount of contacts from the last iteration to determine the amount of buckets to use in the hash map for the next iteration
old_read_cache.Prepare(inExpectedNumBodyPairs, inExpectedNumManifolds);
}
bool ContactConstraintManager::WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const
{
// The body pair needs to be in the cache and it needs to have a manifold (otherwise it's just a record indicating that there are no collisions)
const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
BodyPair key;
if (inBody1ID < inBody2ID)
key = BodyPair(inBody1ID, inBody2ID);
else
key = BodyPair(inBody2ID, inBody1ID);
uint64 key_hash = key.GetHash();
const BPKeyValue *kv = read_cache.Find(key, key_hash);
return kv != nullptr && kv->GetValue().mFirstCachedManifold != ManifoldMap::cInvalidHandle;
}
template <EMotionType Type1, EMotionType Type2>
JPH_INLINE void ContactConstraintManager::sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio)
{
// Calculate tangents
Vec3 t1, t2;
ioConstraint.GetTangents(t1, t2);
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
{
// Warm starting: Apply impulse from last frame
if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
{
wcp.mFrictionConstraint1.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, inWarmStartImpulseRatio);
wcp.mFrictionConstraint2.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, inWarmStartImpulseRatio);
}
wcp.mNonPenetrationConstraint.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, inWarmStartImpulseRatio);
}
}
template <class MotionPropertiesCallback>
void ContactConstraintManager::WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, MotionPropertiesCallback &ioCallback)
{
JPH_PROFILE_FUNCTION();
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
{
ContactConstraint &constraint = mConstraints[*constraint_idx];
// Fetch bodies
Body &body1 = *constraint.mBody1;
EMotionType motion_type1 = body1.GetMotionType();
MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
Body &body2 = *constraint.mBody2;
EMotionType motion_type2 = body2.GetMotionType();
MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
// Dispatch to the correct templated form
// Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
if (motion_type1 == EMotionType::Dynamic)
{
if (motion_type2 == EMotionType::Dynamic)
{
sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
ioCallback(motion_properties2);
}
else
sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
ioCallback(motion_properties1);
}
else
{
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
sWarmStartConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
ioCallback(motion_properties2);
}
}
}
// Specialize for the two body callback types
template void ContactConstraintManager::WarmStartVelocityConstraints<CalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, CalculateSolverSteps &ioCallback);
template void ContactConstraintManager::WarmStartVelocityConstraints<DummyCalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, DummyCalculateSolverSteps &ioCallback);
template <EMotionType Type1, EMotionType Type2>
JPH_INLINE bool ContactConstraintManager::sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2)
{
bool any_impulse_applied = false;
// Calculate tangents
Vec3 t1, t2;
ioConstraint.GetTangents(t1, t2);
// First apply all friction constraints (non-penetration is more important than friction)
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
{
// Check if friction is enabled
if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
{
// Calculate impulse to stop motion in tangential direction
float lambda1 = wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1);
float lambda2 = wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2);
float total_lambda_sq = Square(lambda1) + Square(lambda2);
// Calculate max impulse that can be applied. Note that we're using the non-penetration impulse from the previous iteration here.
// We do this because non-penetration is more important so is solved last (the last things that are solved in an iterative solver
// contribute the most).
float max_lambda_f = ioConstraint.mCombinedFriction * wcp.mNonPenetrationConstraint.GetTotalLambda();
// If the total lambda that we will apply is too large, scale it back
if (total_lambda_sq > Square(max_lambda_f))
{
float scale = max_lambda_f / sqrt(total_lambda_sq);
lambda1 *= scale;
lambda2 *= scale;
}
// Apply the friction impulse
if (wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, lambda1))
any_impulse_applied = true;
if (wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, lambda2))
any_impulse_applied = true;
}
}
Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
// Then apply all non-penetration constraints
for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
{
// Solve non penetration velocities
if (wcp.mNonPenetrationConstraint.TemplatedSolveVelocityConstraint<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, 0.0f, FLT_MAX))
any_impulse_applied = true;
}
return any_impulse_applied;
}
bool ContactConstraintManager::SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
{
JPH_PROFILE_FUNCTION();
bool any_impulse_applied = false;
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
{
ContactConstraint &constraint = mConstraints[*constraint_idx];
// Fetch bodies
Body &body1 = *constraint.mBody1;
EMotionType motion_type1 = body1.GetMotionType();
MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
Body &body2 = *constraint.mBody2;
EMotionType motion_type2 = body2.GetMotionType();
MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
// Dispatch to the correct templated form
switch (motion_type1)
{
case EMotionType::Dynamic:
switch (motion_type2)
{
case EMotionType::Dynamic:
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
break;
case EMotionType::Kinematic:
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(constraint, motion_properties1, motion_properties2);
break;
case EMotionType::Static:
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2);
break;
default:
JPH_ASSERT(false);
break;
}
break;
case EMotionType::Kinematic:
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
break;
case EMotionType::Static:
JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
break;
default:
JPH_ASSERT(false);
break;
}
}
return any_impulse_applied;
}
void ContactConstraintManager::StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const
{
// Copy back total applied impulse to cache for the next frame
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
{
const ContactConstraint &constraint = mConstraints[*constraint_idx];
for (const WorldContactPoint &wcp : constraint.mContactPoints)
{
wcp.mContactPoint->mNonPenetrationLambda = wcp.mNonPenetrationConstraint.GetTotalLambda();
wcp.mContactPoint->mFrictionLambda[0] = wcp.mFrictionConstraint1.GetTotalLambda();
wcp.mContactPoint->mFrictionLambda[1] = wcp.mFrictionConstraint2.GetTotalLambda();
}
}
}
bool ContactConstraintManager::SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
{
JPH_PROFILE_FUNCTION();
bool any_impulse_applied = false;
for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
{
ContactConstraint &constraint = mConstraints[*constraint_idx];
// Fetch bodies
Body &body1 = *constraint.mBody1;
Body &body2 = *constraint.mBody2;
// Get transforms
RMat44 transform1 = body1.GetCenterOfMassTransform();
RMat44 transform2 = body2.GetCenterOfMassTransform();
Vec3 ws_normal = constraint.GetWorldSpaceNormal();
for (WorldContactPoint &wcp : constraint.mContactPoints)
{
// Calculate new contact point positions in world space (the bodies may have moved)
RVec3 p1 = transform1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
RVec3 p2 = transform2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
// Calculate separation along the normal (negative if interpenetrating)
// Allow a little penetration by default (PhysicsSettings::mPenetrationSlop) to avoid jittering between contact/no-contact which wipes out the contact cache and warm start impulses
// Clamp penetration to a max PhysicsSettings::mMaxPenetrationDistance so that we don't apply a huge impulse if we're penetrating a lot
float separation = max(Vec3(p2 - p1).Dot(ws_normal) + mPhysicsSettings.mPenetrationSlop, -mPhysicsSettings.mMaxPenetrationDistance);
// Only enforce constraint when separation < 0 (otherwise we're apart)
if (separation < 0.0f)
{
// Update constraint properties (bodies may have moved)
wcp.CalculateNonPenetrationConstraintProperties(body1, constraint.mInvMass1, constraint.mInvInertiaScale1, body2, constraint.mInvMass2, constraint.mInvInertiaScale2, p1, p2, ws_normal);
// Solve position errors
if (wcp.mNonPenetrationConstraint.SolvePositionConstraintWithMassOverride(body1, constraint.mInvMass1, body2, constraint.mInvMass2, ws_normal, separation, mPhysicsSettings.mBaumgarte))
any_impulse_applied = true;
}
}
}
return any_impulse_applied;
}
void ContactConstraintManager::RecycleConstraintBuffer()
{
// Reset constraint array
mNumConstraints = 0;
}
void ContactConstraintManager::FinishConstraintBuffer()
{
// Free constraints buffer
mUpdateContext->mTempAllocator->Free(mConstraints, mMaxConstraints * sizeof(ContactConstraint));
mConstraints = nullptr;
mNumConstraints = 0;
// Reset update context
mUpdateContext = nullptr;
}
void ContactConstraintManager::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
{
mCache[mCacheWriteIdx ^ 1].SaveState(inStream, inFilter);
}
bool ContactConstraintManager::RestoreState(StateRecorder &inStream, const StateRecorderFilter *inFilter)
{
bool success = mCache[mCacheWriteIdx].RestoreState(mCache[mCacheWriteIdx ^ 1], inStream, inFilter);
// If this is the last part, the cache is finalized
if (inStream.IsLastPart())
{
mCacheWriteIdx ^= 1;
mCache[mCacheWriteIdx].Clear();
}
return success;
}
JPH_NAMESPACE_END