godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/ManifoldBetweenTwoFaces.cpp
2025-04-12 18:40:44 +02:00

249 lines
9.5 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/ManifoldBetweenTwoFaces.h>
#include <Jolt/Physics/Constraints/ContactConstraintManager.h>
#include <Jolt/Geometry/ClipPoly.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
void PruneContactPoints(Vec3Arg inPenetrationAxis, ContactPoints &ioContactPointsOn1, ContactPoints &ioContactPointsOn2 JPH_IF_DEBUG_RENDERER(, RVec3Arg inCenterOfMass))
{
// Makes no sense to call this with 4 or less points
JPH_ASSERT(ioContactPointsOn1.size() > 4);
// Both arrays should have the same size
JPH_ASSERT(ioContactPointsOn1.size() == ioContactPointsOn2.size());
// Penetration axis must be normalized
JPH_ASSERT(inPenetrationAxis.IsNormalized());
// We use a heuristic of (distance to center of mass) * (penetration depth) to find the contact point that we should keep
// Neither of those two terms should ever become zero, so we clamp against this minimum value
constexpr float cMinDistanceSq = 1.0e-6f; // 1 mm
ContactPoints projected;
StaticArray<float, 64> penetration_depth_sq;
for (ContactPoints::size_type i = 0; i < ioContactPointsOn1.size(); ++i)
{
// Project contact points on the plane through inCenterOfMass with normal inPenetrationAxis and center around the center of mass of body 1
// (note that since all points are relative to inCenterOfMass we can project onto the plane through the origin)
Vec3 v1 = ioContactPointsOn1[i];
projected.push_back(v1 - v1.Dot(inPenetrationAxis) * inPenetrationAxis);
// Calculate penetration depth^2 of each point and clamp against the minimal distance
Vec3 v2 = ioContactPointsOn2[i];
penetration_depth_sq.push_back(max(cMinDistanceSq, (v2 - v1).LengthSq()));
}
// Find the point that is furthest away from the center of mass (its torque will have the biggest influence)
// and the point that has the deepest penetration depth. Use the heuristic (distance to center of mass) * (penetration depth) for this.
uint point1 = 0;
float val = max(cMinDistanceSq, projected[0].LengthSq()) * penetration_depth_sq[0];
for (uint i = 0; i < projected.size(); ++i)
{
float v = max(cMinDistanceSq, projected[i].LengthSq()) * penetration_depth_sq[i];
if (v > val)
{
val = v;
point1 = i;
}
}
Vec3 point1v = projected[point1];
// Find point furthest from the first point forming a line segment with point1. Again combine this with the heuristic
// for deepest point as per above.
uint point2 = uint(-1);
val = -FLT_MAX;
for (uint i = 0; i < projected.size(); ++i)
if (i != point1)
{
float v = max(cMinDistanceSq, (projected[i] - point1v).LengthSq()) * penetration_depth_sq[i];
if (v > val)
{
val = v;
point2 = i;
}
}
JPH_ASSERT(point2 != uint(-1));
Vec3 point2v = projected[point2];
// Find furthest points on both sides of the line segment in order to maximize the area
uint point3 = uint(-1);
uint point4 = uint(-1);
float min_val = 0.0f;
float max_val = 0.0f;
Vec3 perp = (point2v - point1v).Cross(inPenetrationAxis);
for (uint i = 0; i < projected.size(); ++i)
if (i != point1 && i != point2)
{
float v = perp.Dot(projected[i] - point1v);
if (v < min_val)
{
min_val = v;
point3 = i;
}
else if (v > max_val)
{
max_val = v;
point4 = i;
}
}
// Add points to array (in order so they form a polygon)
StaticArray<Vec3, 4> points_to_keep_on_1, points_to_keep_on_2;
points_to_keep_on_1.push_back(ioContactPointsOn1[point1]);
points_to_keep_on_2.push_back(ioContactPointsOn2[point1]);
if (point3 != uint(-1))
{
points_to_keep_on_1.push_back(ioContactPointsOn1[point3]);
points_to_keep_on_2.push_back(ioContactPointsOn2[point3]);
}
points_to_keep_on_1.push_back(ioContactPointsOn1[point2]);
points_to_keep_on_2.push_back(ioContactPointsOn2[point2]);
if (point4 != uint(-1))
{
JPH_ASSERT(point3 != point4);
points_to_keep_on_1.push_back(ioContactPointsOn1[point4]);
points_to_keep_on_2.push_back(ioContactPointsOn2[point4]);
}
#ifdef JPH_DEBUG_RENDERER
if (ContactConstraintManager::sDrawContactPointReduction)
{
// Draw input polygon
DebugRenderer::sInstance->DrawWirePolygon(RMat44::sTranslation(inCenterOfMass), ioContactPointsOn1, Color::sOrange, 0.05f);
// Draw primary axis
DebugRenderer::sInstance->DrawArrow(inCenterOfMass + ioContactPointsOn1[point1], inCenterOfMass + ioContactPointsOn1[point2], Color::sRed, 0.05f);
// Draw contact points we kept
for (Vec3 p : points_to_keep_on_1)
DebugRenderer::sInstance->DrawMarker(inCenterOfMass + p, Color::sGreen, 0.1f);
}
#endif // JPH_DEBUG_RENDERER
// Copy the points back to the input buffer
ioContactPointsOn1 = points_to_keep_on_1;
ioContactPointsOn2 = points_to_keep_on_2;
}
void ManifoldBetweenTwoFaces(Vec3Arg inContactPoint1, Vec3Arg inContactPoint2, Vec3Arg inPenetrationAxis, float inMaxContactDistance, const ConvexShape::SupportingFace &inShape1Face, const ConvexShape::SupportingFace &inShape2Face, ContactPoints &outContactPoints1, ContactPoints &outContactPoints2 JPH_IF_DEBUG_RENDERER(, RVec3Arg inCenterOfMass))
{
JPH_ASSERT(inMaxContactDistance > 0.0f);
#ifdef JPH_DEBUG_RENDERER
if (ContactConstraintManager::sDrawContactPoint)
{
RVec3 cp1 = inCenterOfMass + inContactPoint1;
RVec3 cp2 = inCenterOfMass + inContactPoint2;
// Draw contact points
DebugRenderer::sInstance->DrawMarker(cp1, Color::sRed, 0.1f);
DebugRenderer::sInstance->DrawMarker(cp2, Color::sGreen, 0.1f);
// Draw contact normal
DebugRenderer::sInstance->DrawArrow(cp1, cp1 + inPenetrationAxis.Normalized(), Color::sRed, 0.05f);
}
#endif // JPH_DEBUG_RENDERER
// Remember size before adding new points, to check at the end if we added some
ContactPoints::size_type old_size = outContactPoints1.size();
// Check if both shapes have polygon faces
if (inShape1Face.size() >= 2 // The dynamic shape needs to have at least 2 points or else there can never be more than 1 contact point
&& inShape2Face.size() >= 3) // The dynamic/static shape needs to have at least 3 points (in the case that it has 2 points only if the edges match exactly you can have 2 contact points, but this situation is unstable anyhow)
{
// Clip the polygon of face 2 against that of 1
ConvexShape::SupportingFace clipped_face;
if (inShape1Face.size() >= 3)
ClipPolyVsPoly(inShape2Face, inShape1Face, inPenetrationAxis, clipped_face);
else if (inShape1Face.size() == 2)
ClipPolyVsEdge(inShape2Face, inShape1Face[0], inShape1Face[1], inPenetrationAxis, clipped_face);
// Determine plane origin and normal for shape 1
Vec3 plane_origin = inShape1Face[0];
Vec3 plane_normal;
Vec3 first_edge = inShape1Face[1] - plane_origin;
if (inShape1Face.size() >= 3)
{
// Three vertices, can just calculate the normal
plane_normal = first_edge.Cross(inShape1Face[2] - plane_origin);
}
else
{
// Two vertices, first find a perpendicular to the edge and penetration axis and then use the perpendicular together with the edge to form a normal
plane_normal = first_edge.Cross(inPenetrationAxis).Cross(first_edge);
}
// If penetration axis and plane normal are perpendicular, fall back to the contact points
float penetration_axis_dot_plane_normal = inPenetrationAxis.Dot(plane_normal);
if (penetration_axis_dot_plane_normal != 0.0f)
{
float penetration_axis_len = inPenetrationAxis.Length();
for (Vec3 p2 : clipped_face)
{
// Project clipped face back onto the plane of face 1, we do this by solving:
// p1 = p2 + distance * penetration_axis / |penetration_axis|
// (p1 - plane_origin) . plane_normal = 0
// This gives us:
// distance = -|penetration_axis| * (p2 - plane_origin) . plane_normal / penetration_axis . plane_normal
float distance = (p2 - plane_origin).Dot(plane_normal) / penetration_axis_dot_plane_normal; // note left out -|penetration_axis| term
// If the point is less than inMaxContactDistance in front of the plane of face 2, add it as a contact point
if (distance * penetration_axis_len < inMaxContactDistance)
{
Vec3 p1 = p2 - distance * inPenetrationAxis;
outContactPoints1.push_back(p1);
outContactPoints2.push_back(p2);
}
}
}
#ifdef JPH_DEBUG_RENDERER
if (ContactConstraintManager::sDrawSupportingFaces)
{
RMat44 com = RMat44::sTranslation(inCenterOfMass);
// Draw clipped poly
DebugRenderer::sInstance->DrawWirePolygon(com, clipped_face, Color::sOrange);
// Draw supporting faces
DebugRenderer::sInstance->DrawWirePolygon(com, inShape1Face, Color::sRed, 0.05f);
DebugRenderer::sInstance->DrawWirePolygon(com, inShape2Face, Color::sGreen, 0.05f);
// Draw normal
float plane_normal_len = plane_normal.Length();
if (plane_normal_len > 0.0f)
{
RVec3 plane_origin_ws = inCenterOfMass + plane_origin;
DebugRenderer::sInstance->DrawArrow(plane_origin_ws, plane_origin_ws + plane_normal / plane_normal_len, Color::sYellow, 0.05f);
}
// Draw contact points that remain after distance check
for (ContactPoints::size_type p = old_size; p < outContactPoints1.size(); ++p)
{
DebugRenderer::sInstance->DrawMarker(inCenterOfMass + outContactPoints1[p], Color::sYellow, 0.1f);
DebugRenderer::sInstance->DrawMarker(inCenterOfMass + outContactPoints2[p], Color::sOrange, 0.1f);
}
}
#endif // JPH_DEBUG_RENDERER
}
// If the clipping result is empty, use the contact point itself
if (outContactPoints1.size() == old_size)
{
outContactPoints1.push_back(inContactPoint1);
outContactPoints2.push_back(inContactPoint2);
}
}
JPH_NAMESPACE_END