godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/InternalEdgeRemovingCollector.h
2025-04-12 18:40:44 +02:00

262 lines
10 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2024 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/QuickSort.h>
#include <Jolt/Core/STLLocalAllocator.h>
#include <Jolt/Physics/Collision/CollisionDispatch.h>
//#define JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
JPH_NAMESPACE_BEGIN
/// Removes internal edges from collision results. Can be used to filter out 'ghost collisions'.
/// Based on: Contact generation for meshes - Pierre Terdiman (https://www.codercorner.com/MeshContacts.pdf)
///
/// Note that this class requires that CollideSettingsBase::mActiveEdgeMode == EActiveEdgeMode::CollideWithAll
/// and CollideSettingsBase::mCollectFacesMode == ECollectFacesMode::CollectFaces.
class InternalEdgeRemovingCollector : public CollideShapeCollector
{
static constexpr uint cMaxLocalDelayedResults = 32;
static constexpr uint cMaxLocalVoidedFeatures = 128;
/// Check if a vertex is voided
inline bool IsVoided(const SubShapeID &inSubShapeID, Vec3 inV) const
{
for (const Voided &vf : mVoidedFeatures)
if (vf.mSubShapeID == inSubShapeID
&& inV.IsClose(Vec3::sLoadFloat3Unsafe(vf.mFeature), 1.0e-8f))
return true;
return false;
}
/// Add all vertices of a face to the voided features
inline void VoidFeatures(const CollideShapeResult &inResult)
{
for (const Vec3 &v : inResult.mShape2Face)
if (!IsVoided(inResult.mSubShapeID1, v))
{
Voided vf;
v.StoreFloat3(&vf.mFeature);
vf.mSubShapeID = inResult.mSubShapeID1;
mVoidedFeatures.push_back(vf);
}
}
/// Call the chained collector
inline void Chain(const CollideShapeResult &inResult)
{
// Make sure the chained collector has the same context as we do
mChainedCollector.SetContext(GetContext());
// Forward the hit
mChainedCollector.AddHit(inResult);
// If our chained collector updated its early out fraction, we need to follow
UpdateEarlyOutFraction(mChainedCollector.GetEarlyOutFraction());
}
/// Call the chained collector and void all features of inResult
inline void ChainAndVoid(const CollideShapeResult &inResult)
{
Chain(inResult);
VoidFeatures(inResult);
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
DebugRenderer::sInstance->DrawWirePolygon(RMat44::sIdentity(), inResult.mShape2Face, Color::sGreen);
DebugRenderer::sInstance->DrawArrow(RVec3(inResult.mContactPointOn2), RVec3(inResult.mContactPointOn2) + inResult.mPenetrationAxis.NormalizedOr(Vec3::sZero()), Color::sGreen, 0.1f);
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
}
public:
/// Constructor, configures a collector to be called with all the results that do not hit internal edges
explicit InternalEdgeRemovingCollector(CollideShapeCollector &inChainedCollector) :
CollideShapeCollector(inChainedCollector),
mChainedCollector(inChainedCollector)
{
// Initialize arrays to full capacity to avoid needless reallocation calls
mVoidedFeatures.reserve(cMaxLocalVoidedFeatures);
mDelayedResults.reserve(cMaxLocalDelayedResults);
}
// See: CollideShapeCollector::Reset
virtual void Reset() override
{
CollideShapeCollector::Reset();
mChainedCollector.Reset();
mVoidedFeatures.clear();
mDelayedResults.clear();
}
// See: CollideShapeCollector::OnBody
virtual void OnBody(const Body &inBody) override
{
// Just forward the call to our chained collector
mChainedCollector.OnBody(inBody);
}
// See: CollideShapeCollector::AddHit
virtual void AddHit(const CollideShapeResult &inResult) override
{
// We only support welding when the shape is a triangle or has more vertices so that we can calculate a normal
if (inResult.mShape2Face.size() < 3)
return ChainAndVoid(inResult);
// Get the triangle normal of shape 2 face
Vec3 triangle_normal = (inResult.mShape2Face[1] - inResult.mShape2Face[0]).Cross(inResult.mShape2Face[2] - inResult.mShape2Face[0]);
float triangle_normal_len = triangle_normal.Length();
if (triangle_normal_len < 1e-6f)
return ChainAndVoid(inResult);
// If the triangle normal matches the contact normal within 1 degree, we can process the contact immediately
// We make the assumption here that if the contact normal and the triangle normal align that the we're dealing with a 'face contact'
Vec3 contact_normal = -inResult.mPenetrationAxis;
float contact_normal_len = inResult.mPenetrationAxis.Length();
if (triangle_normal.Dot(contact_normal) > 0.999848f * contact_normal_len * triangle_normal_len) // cos(1 degree)
return ChainAndVoid(inResult);
// Delayed processing
mDelayedResults.push_back(inResult);
}
/// After all hits have been added, call this function to process the delayed results
void Flush()
{
// Sort on biggest penetration depth first
Array<uint, STLLocalAllocator<uint, cMaxLocalDelayedResults>> sorted_indices;
sorted_indices.resize(mDelayedResults.size());
for (uint i = 0; i < uint(mDelayedResults.size()); ++i)
sorted_indices[i] = i;
QuickSort(sorted_indices.begin(), sorted_indices.end(), [this](uint inLHS, uint inRHS) { return mDelayedResults[inLHS].mPenetrationDepth > mDelayedResults[inRHS].mPenetrationDepth; });
// Loop over all results
for (uint i = 0; i < uint(mDelayedResults.size()); ++i)
{
const CollideShapeResult &r = mDelayedResults[sorted_indices[i]];
// Determine which vertex or which edge is the closest to the contact point
float best_dist_sq = FLT_MAX;
uint best_v1_idx = 0;
uint best_v2_idx = 0;
uint num_v = uint(r.mShape2Face.size());
uint v1_idx = num_v - 1;
Vec3 v1 = r.mShape2Face[v1_idx] - r.mContactPointOn2;
for (uint v2_idx = 0; v2_idx < num_v; ++v2_idx)
{
Vec3 v2 = r.mShape2Face[v2_idx] - r.mContactPointOn2;
Vec3 v1_v2 = v2 - v1;
float denominator = v1_v2.LengthSq();
if (denominator < Square(FLT_EPSILON))
{
// Degenerate, assume v1 is closest, v2 will be tested in a later iteration
float v1_len_sq = v1.LengthSq();
if (v1_len_sq < best_dist_sq)
{
best_dist_sq = v1_len_sq;
best_v1_idx = v1_idx;
best_v2_idx = v1_idx;
}
}
else
{
// Taken from ClosestPoint::GetBaryCentricCoordinates
float fraction = -v1.Dot(v1_v2) / denominator;
if (fraction < 1.0e-6f)
{
// Closest lies on v1
float v1_len_sq = v1.LengthSq();
if (v1_len_sq < best_dist_sq)
{
best_dist_sq = v1_len_sq;
best_v1_idx = v1_idx;
best_v2_idx = v1_idx;
}
}
else if (fraction < 1.0f - 1.0e-6f)
{
// Closest lies on the line segment v1, v2
Vec3 closest = v1 + fraction * v1_v2;
float closest_len_sq = closest.LengthSq();
if (closest_len_sq < best_dist_sq)
{
best_dist_sq = closest_len_sq;
best_v1_idx = v1_idx;
best_v2_idx = v2_idx;
}
}
// else closest is v2, but v2 will be tested in a later iteration
}
v1_idx = v2_idx;
v1 = v2;
}
// Check if this vertex/edge is voided
bool voided = IsVoided(r.mSubShapeID1, r.mShape2Face[best_v1_idx])
&& (best_v1_idx == best_v2_idx || IsVoided(r.mSubShapeID1, r.mShape2Face[best_v2_idx]));
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
Color color = voided? Color::sRed : Color::sYellow;
DebugRenderer::sInstance->DrawText3D(RVec3(r.mContactPointOn2), StringFormat("%d: %g", i, r.mPenetrationDepth), color, 0.1f);
DebugRenderer::sInstance->DrawWirePolygon(RMat44::sIdentity(), r.mShape2Face, color);
DebugRenderer::sInstance->DrawArrow(RVec3(r.mContactPointOn2), RVec3(r.mContactPointOn2) + r.mPenetrationAxis.NormalizedOr(Vec3::sZero()), color, 0.1f);
DebugRenderer::sInstance->DrawMarker(RVec3(r.mShape2Face[best_v1_idx]), IsVoided(r.mSubShapeID1, r.mShape2Face[best_v1_idx])? Color::sRed : Color::sYellow, 0.1f);
DebugRenderer::sInstance->DrawMarker(RVec3(r.mShape2Face[best_v2_idx]), IsVoided(r.mSubShapeID1, r.mShape2Face[best_v2_idx])? Color::sRed : Color::sYellow, 0.1f);
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
// No voided features, accept the contact
if (!voided)
Chain(r);
// Void the features of this face
VoidFeatures(r);
}
// All delayed results have been processed
mVoidedFeatures.clear();
mDelayedResults.clear();
}
// See: CollideShapeCollector::OnBodyEnd
virtual void OnBodyEnd() override
{
Flush();
mChainedCollector.OnBodyEnd();
}
/// Version of CollisionDispatch::sCollideShapeVsShape that removes internal edges
static void sCollideShapeVsShape(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, const ShapeFilter &inShapeFilter = { })
{
JPH_ASSERT(inCollideShapeSettings.mActiveEdgeMode == EActiveEdgeMode::CollideWithAll); // Won't work without colliding with all edges
JPH_ASSERT(inCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces); // Won't work without collecting faces
InternalEdgeRemovingCollector wrapper(ioCollector);
CollisionDispatch::sCollideShapeVsShape(inShape1, inShape2, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1, inSubShapeIDCreator2, inCollideShapeSettings, wrapper, inShapeFilter);
wrapper.Flush();
}
private:
// This algorithm tests a convex shape (shape 1) against a set of polygons (shape 2).
// This assumption doesn't hold if the shape we're testing is a compound shape, so we must also
// store the sub shape ID and ignore voided features that belong to another sub shape ID.
struct Voided
{
Float3 mFeature; // Feature that is voided (of shape 2). Read with Vec3::sLoadFloat3Unsafe so must not be the last member.
SubShapeID mSubShapeID; // Sub shape ID of the shape that is colliding against the feature (of shape 1).
};
CollideShapeCollector & mChainedCollector;
Array<Voided, STLLocalAllocator<Voided, cMaxLocalVoidedFeatures>> mVoidedFeatures;
Array<CollideShapeResult, STLLocalAllocator<CollideShapeResult, cMaxLocalDelayedResults>> mDelayedResults;
};
JPH_NAMESPACE_END