262 lines
10 KiB
C++
262 lines
10 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2024 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Core/QuickSort.h>
|
|
#include <Jolt/Core/STLLocalAllocator.h>
|
|
#include <Jolt/Physics/Collision/CollisionDispatch.h>
|
|
|
|
//#define JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
|
|
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
#include <Jolt/Renderer/DebugRenderer.h>
|
|
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Removes internal edges from collision results. Can be used to filter out 'ghost collisions'.
|
|
/// Based on: Contact generation for meshes - Pierre Terdiman (https://www.codercorner.com/MeshContacts.pdf)
|
|
///
|
|
/// Note that this class requires that CollideSettingsBase::mActiveEdgeMode == EActiveEdgeMode::CollideWithAll
|
|
/// and CollideSettingsBase::mCollectFacesMode == ECollectFacesMode::CollectFaces.
|
|
class InternalEdgeRemovingCollector : public CollideShapeCollector
|
|
{
|
|
static constexpr uint cMaxLocalDelayedResults = 32;
|
|
static constexpr uint cMaxLocalVoidedFeatures = 128;
|
|
|
|
/// Check if a vertex is voided
|
|
inline bool IsVoided(const SubShapeID &inSubShapeID, Vec3 inV) const
|
|
{
|
|
for (const Voided &vf : mVoidedFeatures)
|
|
if (vf.mSubShapeID == inSubShapeID
|
|
&& inV.IsClose(Vec3::sLoadFloat3Unsafe(vf.mFeature), 1.0e-8f))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Add all vertices of a face to the voided features
|
|
inline void VoidFeatures(const CollideShapeResult &inResult)
|
|
{
|
|
for (const Vec3 &v : inResult.mShape2Face)
|
|
if (!IsVoided(inResult.mSubShapeID1, v))
|
|
{
|
|
Voided vf;
|
|
v.StoreFloat3(&vf.mFeature);
|
|
vf.mSubShapeID = inResult.mSubShapeID1;
|
|
mVoidedFeatures.push_back(vf);
|
|
}
|
|
}
|
|
|
|
/// Call the chained collector
|
|
inline void Chain(const CollideShapeResult &inResult)
|
|
{
|
|
// Make sure the chained collector has the same context as we do
|
|
mChainedCollector.SetContext(GetContext());
|
|
|
|
// Forward the hit
|
|
mChainedCollector.AddHit(inResult);
|
|
|
|
// If our chained collector updated its early out fraction, we need to follow
|
|
UpdateEarlyOutFraction(mChainedCollector.GetEarlyOutFraction());
|
|
}
|
|
|
|
/// Call the chained collector and void all features of inResult
|
|
inline void ChainAndVoid(const CollideShapeResult &inResult)
|
|
{
|
|
Chain(inResult);
|
|
VoidFeatures(inResult);
|
|
|
|
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
DebugRenderer::sInstance->DrawWirePolygon(RMat44::sIdentity(), inResult.mShape2Face, Color::sGreen);
|
|
DebugRenderer::sInstance->DrawArrow(RVec3(inResult.mContactPointOn2), RVec3(inResult.mContactPointOn2) + inResult.mPenetrationAxis.NormalizedOr(Vec3::sZero()), Color::sGreen, 0.1f);
|
|
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
}
|
|
|
|
public:
|
|
/// Constructor, configures a collector to be called with all the results that do not hit internal edges
|
|
explicit InternalEdgeRemovingCollector(CollideShapeCollector &inChainedCollector) :
|
|
CollideShapeCollector(inChainedCollector),
|
|
mChainedCollector(inChainedCollector)
|
|
{
|
|
// Initialize arrays to full capacity to avoid needless reallocation calls
|
|
mVoidedFeatures.reserve(cMaxLocalVoidedFeatures);
|
|
mDelayedResults.reserve(cMaxLocalDelayedResults);
|
|
}
|
|
|
|
// See: CollideShapeCollector::Reset
|
|
virtual void Reset() override
|
|
{
|
|
CollideShapeCollector::Reset();
|
|
|
|
mChainedCollector.Reset();
|
|
|
|
mVoidedFeatures.clear();
|
|
mDelayedResults.clear();
|
|
}
|
|
|
|
// See: CollideShapeCollector::OnBody
|
|
virtual void OnBody(const Body &inBody) override
|
|
{
|
|
// Just forward the call to our chained collector
|
|
mChainedCollector.OnBody(inBody);
|
|
}
|
|
|
|
// See: CollideShapeCollector::AddHit
|
|
virtual void AddHit(const CollideShapeResult &inResult) override
|
|
{
|
|
// We only support welding when the shape is a triangle or has more vertices so that we can calculate a normal
|
|
if (inResult.mShape2Face.size() < 3)
|
|
return ChainAndVoid(inResult);
|
|
|
|
// Get the triangle normal of shape 2 face
|
|
Vec3 triangle_normal = (inResult.mShape2Face[1] - inResult.mShape2Face[0]).Cross(inResult.mShape2Face[2] - inResult.mShape2Face[0]);
|
|
float triangle_normal_len = triangle_normal.Length();
|
|
if (triangle_normal_len < 1e-6f)
|
|
return ChainAndVoid(inResult);
|
|
|
|
// If the triangle normal matches the contact normal within 1 degree, we can process the contact immediately
|
|
// We make the assumption here that if the contact normal and the triangle normal align that the we're dealing with a 'face contact'
|
|
Vec3 contact_normal = -inResult.mPenetrationAxis;
|
|
float contact_normal_len = inResult.mPenetrationAxis.Length();
|
|
if (triangle_normal.Dot(contact_normal) > 0.999848f * contact_normal_len * triangle_normal_len) // cos(1 degree)
|
|
return ChainAndVoid(inResult);
|
|
|
|
// Delayed processing
|
|
mDelayedResults.push_back(inResult);
|
|
}
|
|
|
|
/// After all hits have been added, call this function to process the delayed results
|
|
void Flush()
|
|
{
|
|
// Sort on biggest penetration depth first
|
|
Array<uint, STLLocalAllocator<uint, cMaxLocalDelayedResults>> sorted_indices;
|
|
sorted_indices.resize(mDelayedResults.size());
|
|
for (uint i = 0; i < uint(mDelayedResults.size()); ++i)
|
|
sorted_indices[i] = i;
|
|
QuickSort(sorted_indices.begin(), sorted_indices.end(), [this](uint inLHS, uint inRHS) { return mDelayedResults[inLHS].mPenetrationDepth > mDelayedResults[inRHS].mPenetrationDepth; });
|
|
|
|
// Loop over all results
|
|
for (uint i = 0; i < uint(mDelayedResults.size()); ++i)
|
|
{
|
|
const CollideShapeResult &r = mDelayedResults[sorted_indices[i]];
|
|
|
|
// Determine which vertex or which edge is the closest to the contact point
|
|
float best_dist_sq = FLT_MAX;
|
|
uint best_v1_idx = 0;
|
|
uint best_v2_idx = 0;
|
|
uint num_v = uint(r.mShape2Face.size());
|
|
uint v1_idx = num_v - 1;
|
|
Vec3 v1 = r.mShape2Face[v1_idx] - r.mContactPointOn2;
|
|
for (uint v2_idx = 0; v2_idx < num_v; ++v2_idx)
|
|
{
|
|
Vec3 v2 = r.mShape2Face[v2_idx] - r.mContactPointOn2;
|
|
Vec3 v1_v2 = v2 - v1;
|
|
float denominator = v1_v2.LengthSq();
|
|
if (denominator < Square(FLT_EPSILON))
|
|
{
|
|
// Degenerate, assume v1 is closest, v2 will be tested in a later iteration
|
|
float v1_len_sq = v1.LengthSq();
|
|
if (v1_len_sq < best_dist_sq)
|
|
{
|
|
best_dist_sq = v1_len_sq;
|
|
best_v1_idx = v1_idx;
|
|
best_v2_idx = v1_idx;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Taken from ClosestPoint::GetBaryCentricCoordinates
|
|
float fraction = -v1.Dot(v1_v2) / denominator;
|
|
if (fraction < 1.0e-6f)
|
|
{
|
|
// Closest lies on v1
|
|
float v1_len_sq = v1.LengthSq();
|
|
if (v1_len_sq < best_dist_sq)
|
|
{
|
|
best_dist_sq = v1_len_sq;
|
|
best_v1_idx = v1_idx;
|
|
best_v2_idx = v1_idx;
|
|
}
|
|
}
|
|
else if (fraction < 1.0f - 1.0e-6f)
|
|
{
|
|
// Closest lies on the line segment v1, v2
|
|
Vec3 closest = v1 + fraction * v1_v2;
|
|
float closest_len_sq = closest.LengthSq();
|
|
if (closest_len_sq < best_dist_sq)
|
|
{
|
|
best_dist_sq = closest_len_sq;
|
|
best_v1_idx = v1_idx;
|
|
best_v2_idx = v2_idx;
|
|
}
|
|
}
|
|
// else closest is v2, but v2 will be tested in a later iteration
|
|
}
|
|
|
|
v1_idx = v2_idx;
|
|
v1 = v2;
|
|
}
|
|
|
|
// Check if this vertex/edge is voided
|
|
bool voided = IsVoided(r.mSubShapeID1, r.mShape2Face[best_v1_idx])
|
|
&& (best_v1_idx == best_v2_idx || IsVoided(r.mSubShapeID1, r.mShape2Face[best_v2_idx]));
|
|
|
|
#ifdef JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
Color color = voided? Color::sRed : Color::sYellow;
|
|
DebugRenderer::sInstance->DrawText3D(RVec3(r.mContactPointOn2), StringFormat("%d: %g", i, r.mPenetrationDepth), color, 0.1f);
|
|
DebugRenderer::sInstance->DrawWirePolygon(RMat44::sIdentity(), r.mShape2Face, color);
|
|
DebugRenderer::sInstance->DrawArrow(RVec3(r.mContactPointOn2), RVec3(r.mContactPointOn2) + r.mPenetrationAxis.NormalizedOr(Vec3::sZero()), color, 0.1f);
|
|
DebugRenderer::sInstance->DrawMarker(RVec3(r.mShape2Face[best_v1_idx]), IsVoided(r.mSubShapeID1, r.mShape2Face[best_v1_idx])? Color::sRed : Color::sYellow, 0.1f);
|
|
DebugRenderer::sInstance->DrawMarker(RVec3(r.mShape2Face[best_v2_idx]), IsVoided(r.mSubShapeID1, r.mShape2Face[best_v2_idx])? Color::sRed : Color::sYellow, 0.1f);
|
|
#endif // JPH_INTERNAL_EDGE_REMOVING_COLLECTOR_DEBUG
|
|
|
|
// No voided features, accept the contact
|
|
if (!voided)
|
|
Chain(r);
|
|
|
|
// Void the features of this face
|
|
VoidFeatures(r);
|
|
}
|
|
|
|
// All delayed results have been processed
|
|
mVoidedFeatures.clear();
|
|
mDelayedResults.clear();
|
|
}
|
|
|
|
// See: CollideShapeCollector::OnBodyEnd
|
|
virtual void OnBodyEnd() override
|
|
{
|
|
Flush();
|
|
mChainedCollector.OnBodyEnd();
|
|
}
|
|
|
|
/// Version of CollisionDispatch::sCollideShapeVsShape that removes internal edges
|
|
static void sCollideShapeVsShape(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, const ShapeFilter &inShapeFilter = { })
|
|
{
|
|
JPH_ASSERT(inCollideShapeSettings.mActiveEdgeMode == EActiveEdgeMode::CollideWithAll); // Won't work without colliding with all edges
|
|
JPH_ASSERT(inCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces); // Won't work without collecting faces
|
|
|
|
InternalEdgeRemovingCollector wrapper(ioCollector);
|
|
CollisionDispatch::sCollideShapeVsShape(inShape1, inShape2, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1, inSubShapeIDCreator2, inCollideShapeSettings, wrapper, inShapeFilter);
|
|
wrapper.Flush();
|
|
}
|
|
|
|
private:
|
|
// This algorithm tests a convex shape (shape 1) against a set of polygons (shape 2).
|
|
// This assumption doesn't hold if the shape we're testing is a compound shape, so we must also
|
|
// store the sub shape ID and ignore voided features that belong to another sub shape ID.
|
|
struct Voided
|
|
{
|
|
Float3 mFeature; // Feature that is voided (of shape 2). Read with Vec3::sLoadFloat3Unsafe so must not be the last member.
|
|
SubShapeID mSubShapeID; // Sub shape ID of the shape that is colliding against the feature (of shape 1).
|
|
};
|
|
|
|
CollideShapeCollector & mChainedCollector;
|
|
Array<Voided, STLLocalAllocator<Voided, cMaxLocalVoidedFeatures>> mVoidedFeatures;
|
|
Array<CollideShapeResult, STLLocalAllocator<CollideShapeResult, cMaxLocalDelayedResults>> mDelayedResults;
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|