godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/EstimateCollisionResponse.cpp

214 lines
8 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/EstimateCollisionResponse.h>
#include <Jolt/Physics/Body/Body.h>
JPH_NAMESPACE_BEGIN
void EstimateCollisionResponse(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, CollisionEstimationResult &outResult, float inCombinedFriction, float inCombinedRestitution, float inMinVelocityForRestitution, uint inNumIterations)
{
// Note this code is based on AxisConstraintPart, see that class for more comments on the math
ContactPoints::size_type num_points = inManifold.mRelativeContactPointsOn1.size();
JPH_ASSERT(num_points == inManifold.mRelativeContactPointsOn2.size());
// Start with zero impulses
outResult.mImpulses.resize(num_points);
memset(outResult.mImpulses.data(), 0, num_points * sizeof(CollisionEstimationResult::Impulse));
// Calculate friction directions
outResult.mTangent1 = inManifold.mWorldSpaceNormal.GetNormalizedPerpendicular();
outResult.mTangent2 = inManifold.mWorldSpaceNormal.Cross(outResult.mTangent1);
// Get body velocities
EMotionType motion_type1 = inBody1.GetMotionType();
const MotionProperties *motion_properties1 = inBody1.GetMotionPropertiesUnchecked();
if (motion_type1 != EMotionType::Static)
{
outResult.mLinearVelocity1 = motion_properties1->GetLinearVelocity();
outResult.mAngularVelocity1 = motion_properties1->GetAngularVelocity();
}
else
outResult.mLinearVelocity1 = outResult.mAngularVelocity1 = Vec3::sZero();
EMotionType motion_type2 = inBody2.GetMotionType();
const MotionProperties *motion_properties2 = inBody2.GetMotionPropertiesUnchecked();
if (motion_type2 != EMotionType::Static)
{
outResult.mLinearVelocity2 = motion_properties2->GetLinearVelocity();
outResult.mAngularVelocity2 = motion_properties2->GetAngularVelocity();
}
else
outResult.mLinearVelocity2 = outResult.mAngularVelocity2 = Vec3::sZero();
// Get inverse mass and inertia
float inv_m1, inv_m2;
Mat44 inv_i1, inv_i2;
if (motion_type1 == EMotionType::Dynamic)
{
inv_m1 = motion_properties1->GetInverseMass();
inv_i1 = inBody1.GetInverseInertia();
}
else
{
inv_m1 = 0.0f;
inv_i1 = Mat44::sZero();
}
if (motion_type2 == EMotionType::Dynamic)
{
inv_m2 = motion_properties2->GetInverseMass();
inv_i2 = inBody2.GetInverseInertia();
}
else
{
inv_m2 = 0.0f;
inv_i2 = Mat44::sZero();
}
// Get center of masses relative to the base offset
Vec3 com1 = Vec3(inBody1.GetCenterOfMassPosition() - inManifold.mBaseOffset);
Vec3 com2 = Vec3(inBody2.GetCenterOfMassPosition() - inManifold.mBaseOffset);
struct AxisConstraint
{
inline void Initialize(Vec3Arg inR1, Vec3Arg inR2, Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2)
{
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
mR1PlusUxAxis = inR1.Cross(inWorldSpaceNormal);
mR2xAxis = inR2.Cross(inWorldSpaceNormal);
mInvI1_R1PlusUxAxis = inInvI1.Multiply3x3(mR1PlusUxAxis);
mInvI2_R2xAxis = inInvI2.Multiply3x3(mR2xAxis);
mEffectiveMass = 1.0f / (inInvM1 + mInvI1_R1PlusUxAxis.Dot(mR1PlusUxAxis) + inInvM2 + mInvI2_R2xAxis.Dot(mR2xAxis));
mBias = 0.0f;
}
inline float SolveGetLambda(Vec3Arg inWorldSpaceNormal, const CollisionEstimationResult &inResult) const
{
// Calculate jacobian multiplied by linear/angular velocity
float jv = inWorldSpaceNormal.Dot(inResult.mLinearVelocity1 - inResult.mLinearVelocity2) + mR1PlusUxAxis.Dot(inResult.mAngularVelocity1) - mR2xAxis.Dot(inResult.mAngularVelocity2);
// Lagrange multiplier is:
//
// lambda = -K^-1 (J v + b)
return mEffectiveMass * (jv - mBias);
}
inline void SolveApplyLambda(Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, float inLambda, CollisionEstimationResult &ioResult) const
{
// Apply impulse to body velocities
ioResult.mLinearVelocity1 -= (inLambda * inInvM1) * inWorldSpaceNormal;
ioResult.mAngularVelocity1 -= inLambda * mInvI1_R1PlusUxAxis;
ioResult.mLinearVelocity2 += (inLambda * inInvM2) * inWorldSpaceNormal;
ioResult.mAngularVelocity2 += inLambda * mInvI2_R2xAxis;
}
inline void Solve(Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, float inMinLambda, float inMaxLambda, float &ioTotalLambda, CollisionEstimationResult &ioResult) const
{
// Calculate new total lambda
float total_lambda = ioTotalLambda + SolveGetLambda(inWorldSpaceNormal, ioResult);
// Clamp impulse
total_lambda = Clamp(total_lambda, inMinLambda, inMaxLambda);
SolveApplyLambda(inWorldSpaceNormal, inInvM1, inInvM2, total_lambda - ioTotalLambda, ioResult);
ioTotalLambda = total_lambda;
}
Vec3 mR1PlusUxAxis;
Vec3 mR2xAxis;
Vec3 mInvI1_R1PlusUxAxis;
Vec3 mInvI2_R2xAxis;
float mEffectiveMass;
float mBias;
};
struct Constraint
{
AxisConstraint mContact;
AxisConstraint mFriction1;
AxisConstraint mFriction2;
};
// Initialize the constraint properties
Constraint constraints[ContactPoints::Capacity];
for (uint c = 0; c < num_points; ++c)
{
Constraint &constraint = constraints[c];
// Calculate contact points relative to body 1 and 2
Vec3 p = 0.5f * (inManifold.mRelativeContactPointsOn1[c] + inManifold.mRelativeContactPointsOn2[c]);
Vec3 r1 = p - com1;
Vec3 r2 = p - com2;
// Initialize contact constraint
constraint.mContact.Initialize(r1, r2, inManifold.mWorldSpaceNormal, inv_m1, inv_m2, inv_i1, inv_i2);
// Handle elastic collisions
if (inCombinedRestitution > 0.0f)
{
// Calculate velocity of contact point
Vec3 relative_velocity = outResult.mLinearVelocity2 + outResult.mAngularVelocity2.Cross(r2) - outResult.mLinearVelocity1 - outResult.mAngularVelocity1.Cross(r1);
float normal_velocity = relative_velocity.Dot(inManifold.mWorldSpaceNormal);
// If it is big enough, apply restitution
if (normal_velocity < -inMinVelocityForRestitution)
constraint.mContact.mBias = inCombinedRestitution * normal_velocity;
}
if (inCombinedFriction > 0.0f)
{
// Initialize friction constraints
constraint.mFriction1.Initialize(r1, r2, outResult.mTangent1, inv_m1, inv_m2, inv_i1, inv_i2);
constraint.mFriction2.Initialize(r1, r2, outResult.mTangent2, inv_m1, inv_m2, inv_i1, inv_i2);
}
}
// If there's only 1 contact point, we only need 1 iteration
int num_iterations = inCombinedFriction <= 0.0f && num_points == 1? 1 : inNumIterations;
// Solve iteratively
for (int iteration = 0; iteration < num_iterations; ++iteration)
{
// Solve friction constraints first
if (inCombinedFriction > 0.0f && iteration > 0) // For first iteration the contact impulse is zero so there's no point in applying friction
for (uint c = 0; c < num_points; ++c)
{
const Constraint &constraint = constraints[c];
CollisionEstimationResult::Impulse &impulse = outResult.mImpulses[c];
float lambda1 = impulse.mFrictionImpulse1 + constraint.mFriction1.SolveGetLambda(outResult.mTangent1, outResult);
float lambda2 = impulse.mFrictionImpulse2 + constraint.mFriction2.SolveGetLambda(outResult.mTangent2, outResult);
// Calculate max impulse based on contact impulse
float max_impulse = inCombinedFriction * impulse.mContactImpulse;
// If the total lambda that we will apply is too large, scale it back
float total_lambda_sq = Square(lambda1) + Square(lambda2);
if (total_lambda_sq > Square(max_impulse))
{
float scale = max_impulse / sqrt(total_lambda_sq);
lambda1 *= scale;
lambda2 *= scale;
}
constraint.mFriction1.SolveApplyLambda(outResult.mTangent1, inv_m1, inv_m2, lambda1 - impulse.mFrictionImpulse1, outResult);
constraint.mFriction2.SolveApplyLambda(outResult.mTangent2, inv_m1, inv_m2, lambda2 - impulse.mFrictionImpulse2, outResult);
impulse.mFrictionImpulse1 = lambda1;
impulse.mFrictionImpulse2 = lambda2;
}
// Solve contact constraints last
for (uint c = 0; c < num_points; ++c)
constraints[c].mContact.Solve(inManifold.mWorldSpaceNormal, inv_m1, inv_m2, 0.0f, FLT_MAX, outResult.mImpulses[c].mContactImpulse, outResult);
}
}
JPH_NAMESPACE_END