214 lines
8 KiB
C++
214 lines
8 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Collision/EstimateCollisionResponse.h>
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
void EstimateCollisionResponse(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, CollisionEstimationResult &outResult, float inCombinedFriction, float inCombinedRestitution, float inMinVelocityForRestitution, uint inNumIterations)
|
|
{
|
|
// Note this code is based on AxisConstraintPart, see that class for more comments on the math
|
|
|
|
ContactPoints::size_type num_points = inManifold.mRelativeContactPointsOn1.size();
|
|
JPH_ASSERT(num_points == inManifold.mRelativeContactPointsOn2.size());
|
|
|
|
// Start with zero impulses
|
|
outResult.mImpulses.resize(num_points);
|
|
memset(outResult.mImpulses.data(), 0, num_points * sizeof(CollisionEstimationResult::Impulse));
|
|
|
|
// Calculate friction directions
|
|
outResult.mTangent1 = inManifold.mWorldSpaceNormal.GetNormalizedPerpendicular();
|
|
outResult.mTangent2 = inManifold.mWorldSpaceNormal.Cross(outResult.mTangent1);
|
|
|
|
// Get body velocities
|
|
EMotionType motion_type1 = inBody1.GetMotionType();
|
|
const MotionProperties *motion_properties1 = inBody1.GetMotionPropertiesUnchecked();
|
|
if (motion_type1 != EMotionType::Static)
|
|
{
|
|
outResult.mLinearVelocity1 = motion_properties1->GetLinearVelocity();
|
|
outResult.mAngularVelocity1 = motion_properties1->GetAngularVelocity();
|
|
}
|
|
else
|
|
outResult.mLinearVelocity1 = outResult.mAngularVelocity1 = Vec3::sZero();
|
|
|
|
EMotionType motion_type2 = inBody2.GetMotionType();
|
|
const MotionProperties *motion_properties2 = inBody2.GetMotionPropertiesUnchecked();
|
|
if (motion_type2 != EMotionType::Static)
|
|
{
|
|
outResult.mLinearVelocity2 = motion_properties2->GetLinearVelocity();
|
|
outResult.mAngularVelocity2 = motion_properties2->GetAngularVelocity();
|
|
}
|
|
else
|
|
outResult.mLinearVelocity2 = outResult.mAngularVelocity2 = Vec3::sZero();
|
|
|
|
// Get inverse mass and inertia
|
|
float inv_m1, inv_m2;
|
|
Mat44 inv_i1, inv_i2;
|
|
if (motion_type1 == EMotionType::Dynamic)
|
|
{
|
|
inv_m1 = motion_properties1->GetInverseMass();
|
|
inv_i1 = inBody1.GetInverseInertia();
|
|
}
|
|
else
|
|
{
|
|
inv_m1 = 0.0f;
|
|
inv_i1 = Mat44::sZero();
|
|
}
|
|
|
|
if (motion_type2 == EMotionType::Dynamic)
|
|
{
|
|
inv_m2 = motion_properties2->GetInverseMass();
|
|
inv_i2 = inBody2.GetInverseInertia();
|
|
}
|
|
else
|
|
{
|
|
inv_m2 = 0.0f;
|
|
inv_i2 = Mat44::sZero();
|
|
}
|
|
|
|
// Get center of masses relative to the base offset
|
|
Vec3 com1 = Vec3(inBody1.GetCenterOfMassPosition() - inManifold.mBaseOffset);
|
|
Vec3 com2 = Vec3(inBody2.GetCenterOfMassPosition() - inManifold.mBaseOffset);
|
|
|
|
struct AxisConstraint
|
|
{
|
|
inline void Initialize(Vec3Arg inR1, Vec3Arg inR2, Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2)
|
|
{
|
|
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
|
|
mR1PlusUxAxis = inR1.Cross(inWorldSpaceNormal);
|
|
mR2xAxis = inR2.Cross(inWorldSpaceNormal);
|
|
mInvI1_R1PlusUxAxis = inInvI1.Multiply3x3(mR1PlusUxAxis);
|
|
mInvI2_R2xAxis = inInvI2.Multiply3x3(mR2xAxis);
|
|
mEffectiveMass = 1.0f / (inInvM1 + mInvI1_R1PlusUxAxis.Dot(mR1PlusUxAxis) + inInvM2 + mInvI2_R2xAxis.Dot(mR2xAxis));
|
|
mBias = 0.0f;
|
|
}
|
|
|
|
inline float SolveGetLambda(Vec3Arg inWorldSpaceNormal, const CollisionEstimationResult &inResult) const
|
|
{
|
|
// Calculate jacobian multiplied by linear/angular velocity
|
|
float jv = inWorldSpaceNormal.Dot(inResult.mLinearVelocity1 - inResult.mLinearVelocity2) + mR1PlusUxAxis.Dot(inResult.mAngularVelocity1) - mR2xAxis.Dot(inResult.mAngularVelocity2);
|
|
|
|
// Lagrange multiplier is:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
return mEffectiveMass * (jv - mBias);
|
|
}
|
|
|
|
inline void SolveApplyLambda(Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, float inLambda, CollisionEstimationResult &ioResult) const
|
|
{
|
|
// Apply impulse to body velocities
|
|
ioResult.mLinearVelocity1 -= (inLambda * inInvM1) * inWorldSpaceNormal;
|
|
ioResult.mAngularVelocity1 -= inLambda * mInvI1_R1PlusUxAxis;
|
|
ioResult.mLinearVelocity2 += (inLambda * inInvM2) * inWorldSpaceNormal;
|
|
ioResult.mAngularVelocity2 += inLambda * mInvI2_R2xAxis;
|
|
}
|
|
|
|
inline void Solve(Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, float inMinLambda, float inMaxLambda, float &ioTotalLambda, CollisionEstimationResult &ioResult) const
|
|
{
|
|
// Calculate new total lambda
|
|
float total_lambda = ioTotalLambda + SolveGetLambda(inWorldSpaceNormal, ioResult);
|
|
|
|
// Clamp impulse
|
|
total_lambda = Clamp(total_lambda, inMinLambda, inMaxLambda);
|
|
|
|
SolveApplyLambda(inWorldSpaceNormal, inInvM1, inInvM2, total_lambda - ioTotalLambda, ioResult);
|
|
|
|
ioTotalLambda = total_lambda;
|
|
}
|
|
|
|
Vec3 mR1PlusUxAxis;
|
|
Vec3 mR2xAxis;
|
|
Vec3 mInvI1_R1PlusUxAxis;
|
|
Vec3 mInvI2_R2xAxis;
|
|
float mEffectiveMass;
|
|
float mBias;
|
|
};
|
|
|
|
struct Constraint
|
|
{
|
|
AxisConstraint mContact;
|
|
AxisConstraint mFriction1;
|
|
AxisConstraint mFriction2;
|
|
};
|
|
|
|
// Initialize the constraint properties
|
|
Constraint constraints[ContactPoints::Capacity];
|
|
for (uint c = 0; c < num_points; ++c)
|
|
{
|
|
Constraint &constraint = constraints[c];
|
|
|
|
// Calculate contact points relative to body 1 and 2
|
|
Vec3 p = 0.5f * (inManifold.mRelativeContactPointsOn1[c] + inManifold.mRelativeContactPointsOn2[c]);
|
|
Vec3 r1 = p - com1;
|
|
Vec3 r2 = p - com2;
|
|
|
|
// Initialize contact constraint
|
|
constraint.mContact.Initialize(r1, r2, inManifold.mWorldSpaceNormal, inv_m1, inv_m2, inv_i1, inv_i2);
|
|
|
|
// Handle elastic collisions
|
|
if (inCombinedRestitution > 0.0f)
|
|
{
|
|
// Calculate velocity of contact point
|
|
Vec3 relative_velocity = outResult.mLinearVelocity2 + outResult.mAngularVelocity2.Cross(r2) - outResult.mLinearVelocity1 - outResult.mAngularVelocity1.Cross(r1);
|
|
float normal_velocity = relative_velocity.Dot(inManifold.mWorldSpaceNormal);
|
|
|
|
// If it is big enough, apply restitution
|
|
if (normal_velocity < -inMinVelocityForRestitution)
|
|
constraint.mContact.mBias = inCombinedRestitution * normal_velocity;
|
|
}
|
|
|
|
if (inCombinedFriction > 0.0f)
|
|
{
|
|
// Initialize friction constraints
|
|
constraint.mFriction1.Initialize(r1, r2, outResult.mTangent1, inv_m1, inv_m2, inv_i1, inv_i2);
|
|
constraint.mFriction2.Initialize(r1, r2, outResult.mTangent2, inv_m1, inv_m2, inv_i1, inv_i2);
|
|
}
|
|
}
|
|
|
|
// If there's only 1 contact point, we only need 1 iteration
|
|
int num_iterations = inCombinedFriction <= 0.0f && num_points == 1? 1 : inNumIterations;
|
|
|
|
// Solve iteratively
|
|
for (int iteration = 0; iteration < num_iterations; ++iteration)
|
|
{
|
|
// Solve friction constraints first
|
|
if (inCombinedFriction > 0.0f && iteration > 0) // For first iteration the contact impulse is zero so there's no point in applying friction
|
|
for (uint c = 0; c < num_points; ++c)
|
|
{
|
|
const Constraint &constraint = constraints[c];
|
|
CollisionEstimationResult::Impulse &impulse = outResult.mImpulses[c];
|
|
|
|
float lambda1 = impulse.mFrictionImpulse1 + constraint.mFriction1.SolveGetLambda(outResult.mTangent1, outResult);
|
|
float lambda2 = impulse.mFrictionImpulse2 + constraint.mFriction2.SolveGetLambda(outResult.mTangent2, outResult);
|
|
|
|
// Calculate max impulse based on contact impulse
|
|
float max_impulse = inCombinedFriction * impulse.mContactImpulse;
|
|
|
|
// If the total lambda that we will apply is too large, scale it back
|
|
float total_lambda_sq = Square(lambda1) + Square(lambda2);
|
|
if (total_lambda_sq > Square(max_impulse))
|
|
{
|
|
float scale = max_impulse / sqrt(total_lambda_sq);
|
|
lambda1 *= scale;
|
|
lambda2 *= scale;
|
|
}
|
|
|
|
constraint.mFriction1.SolveApplyLambda(outResult.mTangent1, inv_m1, inv_m2, lambda1 - impulse.mFrictionImpulse1, outResult);
|
|
constraint.mFriction2.SolveApplyLambda(outResult.mTangent2, inv_m1, inv_m2, lambda2 - impulse.mFrictionImpulse2, outResult);
|
|
|
|
impulse.mFrictionImpulse1 = lambda1;
|
|
impulse.mFrictionImpulse2 = lambda2;
|
|
}
|
|
|
|
// Solve contact constraints last
|
|
for (uint c = 0; c < num_points; ++c)
|
|
constraints[c].mContact.Solve(inManifold.mWorldSpaceNormal, inv_m1, inv_m2, 0.0f, FLT_MAX, outResult.mImpulses[c].mContactImpulse, outResult);
|
|
}
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|