godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/CollideConvexVsTriangles.cpp
2025-04-12 18:40:44 +02:00

158 lines
7 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/CollideShape.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/ActiveEdges.h>
#include <Jolt/Physics/Collision/NarrowPhaseStats.h>
#include <Jolt/Geometry/EPAPenetrationDepth.h>
#include <Jolt/Geometry/Plane.h>
JPH_NAMESPACE_BEGIN
CollideConvexVsTriangles::CollideConvexVsTriangles(const ConvexShape *inShape1, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeID &inSubShapeID1, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector) :
mCollideShapeSettings(inCollideShapeSettings),
mCollector(ioCollector),
mShape1(inShape1),
mScale1(inScale1),
mScale2(inScale2),
mTransform1(inCenterOfMassTransform1),
mSubShapeID1(inSubShapeID1)
{
// Get transforms
Mat44 inverse_transform2 = inCenterOfMassTransform2.InversedRotationTranslation();
Mat44 transform1_to_2 = inverse_transform2 * inCenterOfMassTransform1;
mTransform2To1 = transform1_to_2.InversedRotationTranslation();
// Calculate bounds
mBoundsOf1 = inShape1->GetLocalBounds().Scaled(inScale1);
mBoundsOf1.ExpandBy(Vec3::sReplicate(inCollideShapeSettings.mMaxSeparationDistance));
mBoundsOf1InSpaceOf2 = mBoundsOf1.Transformed(transform1_to_2); // Convert bounding box of 1 into space of 2
// Determine if shape 2 is inside out or not
mScaleSign2 = ScaleHelpers::IsInsideOut(inScale2)? -1.0f : 1.0f;
}
void CollideConvexVsTriangles::Collide(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, uint8 inActiveEdges, const SubShapeID &inSubShapeID2)
{
JPH_PROFILE_FUNCTION();
// Scale triangle and transform it to the space of 1
Vec3 v0 = mTransform2To1 * (mScale2 * inV0);
Vec3 v1 = mTransform2To1 * (mScale2 * inV1);
Vec3 v2 = mTransform2To1 * (mScale2 * inV2);
// Calculate triangle normal
Vec3 triangle_normal = mScaleSign2 * (v1 - v0).Cross(v2 - v0);
// Backface check
bool back_facing = triangle_normal.Dot(v0) > 0.0f;
if (mCollideShapeSettings.mBackFaceMode == EBackFaceMode::IgnoreBackFaces && back_facing)
return;
// Get bounding box for triangle
AABox triangle_bbox = AABox::sFromTwoPoints(v0, v1);
triangle_bbox.Encapsulate(v2);
// Get intersection between triangle and shape box, if there is none, we're done
if (!triangle_bbox.Overlaps(mBoundsOf1))
return;
// Create triangle support function
TriangleConvexSupport triangle(v0, v1, v2);
// Perform collision detection
// Note: As we don't remember the penetration axis from the last iteration, and it is likely that the shape (A) we're colliding the triangle (B) against is in front of the triangle,
// and the penetration axis is the shortest distance along to push B out of collision, we use the inverse of the triangle normal as an initial penetration axis. This has been seen
// to improve performance by approx. 5% over using a fixed axis like (1, 0, 0).
Vec3 penetration_axis = -triangle_normal, point1, point2;
EPAPenetrationDepth pen_depth;
EPAPenetrationDepth::EStatus status;
// Get the support function
if (mShape1ExCvxRadius == nullptr)
mShape1ExCvxRadius = mShape1->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, mBufferExCvxRadius, mScale1);
// Perform GJK step
float max_separation_distance = mCollideShapeSettings.mMaxSeparationDistance;
status = pen_depth.GetPenetrationDepthStepGJK(*mShape1ExCvxRadius, mShape1ExCvxRadius->GetConvexRadius() + max_separation_distance, triangle, 0.0f, mCollideShapeSettings.mCollisionTolerance, penetration_axis, point1, point2);
// Check result of collision detection
if (status == EPAPenetrationDepth::EStatus::NotColliding)
return;
else if (status == EPAPenetrationDepth::EStatus::Indeterminate)
{
// Need to run expensive EPA algorithm
// We know we're overlapping at this point, so we can set the max separation distance to 0.
// Numerically it is possible that GJK finds that the shapes are overlapping but EPA finds that they're separated.
// In order to avoid this, we clamp the max separation distance to 1 so that we don't excessively inflate the shape,
// but we still inflate it enough to avoid the case where EPA misses the collision.
max_separation_distance = min(max_separation_distance, 1.0f);
// Get the support function
if (mShape1IncCvxRadius == nullptr)
mShape1IncCvxRadius = mShape1->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, mBufferIncCvxRadius, mScale1);
// Add convex radius
AddConvexRadius shape1_add_max_separation_distance(*mShape1IncCvxRadius, max_separation_distance);
// Perform EPA step
if (!pen_depth.GetPenetrationDepthStepEPA(shape1_add_max_separation_distance, triangle, mCollideShapeSettings.mPenetrationTolerance, penetration_axis, point1, point2))
return;
}
// Check if the penetration is bigger than the early out fraction
float penetration_depth = (point2 - point1).Length() - max_separation_distance;
if (-penetration_depth >= mCollector.GetEarlyOutFraction())
return;
// Correct point1 for the added separation distance
float penetration_axis_len = penetration_axis.Length();
if (penetration_axis_len > 0.0f)
point1 -= penetration_axis * (max_separation_distance / penetration_axis_len);
// Check if we have enabled active edge detection
if (mCollideShapeSettings.mActiveEdgeMode == EActiveEdgeMode::CollideOnlyWithActive && inActiveEdges != 0b111)
{
// Convert the active edge velocity hint to local space
Vec3 active_edge_movement_direction = mTransform1.Multiply3x3Transposed(mCollideShapeSettings.mActiveEdgeMovementDirection);
// Update the penetration axis to account for active edges
// Note that we flip the triangle normal as the penetration axis is pointing towards the triangle instead of away
penetration_axis = ActiveEdges::FixNormal(v0, v1, v2, back_facing? triangle_normal : -triangle_normal, inActiveEdges, point2, penetration_axis, active_edge_movement_direction);
}
// Convert to world space
point1 = mTransform1 * point1;
point2 = mTransform1 * point2;
Vec3 penetration_axis_world = mTransform1.Multiply3x3(penetration_axis);
// Create collision result
CollideShapeResult result(point1, point2, penetration_axis_world, penetration_depth, mSubShapeID1, inSubShapeID2, TransformedShape::sGetBodyID(mCollector.GetContext()));
// Gather faces
if (mCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
{
// Get supporting face of shape 1
mShape1->GetSupportingFace(SubShapeID(), -penetration_axis, mScale1, mTransform1, result.mShape1Face);
// Get face of the triangle
result.mShape2Face.resize(3);
result.mShape2Face[0] = mTransform1 * v0;
result.mShape2Face[1] = mTransform1 * v1;
result.mShape2Face[2] = mTransform1 * v2;
}
// Notify the collector
JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
mCollector.AddHit(result);
}
JPH_NAMESPACE_END