158 lines
7 KiB
C++
158 lines
7 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
|
|
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
|
|
#include <Jolt/Physics/Collision/CollideShape.h>
|
|
#include <Jolt/Physics/Collision/TransformedShape.h>
|
|
#include <Jolt/Physics/Collision/ActiveEdges.h>
|
|
#include <Jolt/Physics/Collision/NarrowPhaseStats.h>
|
|
#include <Jolt/Geometry/EPAPenetrationDepth.h>
|
|
#include <Jolt/Geometry/Plane.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
CollideConvexVsTriangles::CollideConvexVsTriangles(const ConvexShape *inShape1, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeID &inSubShapeID1, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector) :
|
|
mCollideShapeSettings(inCollideShapeSettings),
|
|
mCollector(ioCollector),
|
|
mShape1(inShape1),
|
|
mScale1(inScale1),
|
|
mScale2(inScale2),
|
|
mTransform1(inCenterOfMassTransform1),
|
|
mSubShapeID1(inSubShapeID1)
|
|
{
|
|
// Get transforms
|
|
Mat44 inverse_transform2 = inCenterOfMassTransform2.InversedRotationTranslation();
|
|
Mat44 transform1_to_2 = inverse_transform2 * inCenterOfMassTransform1;
|
|
mTransform2To1 = transform1_to_2.InversedRotationTranslation();
|
|
|
|
// Calculate bounds
|
|
mBoundsOf1 = inShape1->GetLocalBounds().Scaled(inScale1);
|
|
mBoundsOf1.ExpandBy(Vec3::sReplicate(inCollideShapeSettings.mMaxSeparationDistance));
|
|
mBoundsOf1InSpaceOf2 = mBoundsOf1.Transformed(transform1_to_2); // Convert bounding box of 1 into space of 2
|
|
|
|
// Determine if shape 2 is inside out or not
|
|
mScaleSign2 = ScaleHelpers::IsInsideOut(inScale2)? -1.0f : 1.0f;
|
|
}
|
|
|
|
void CollideConvexVsTriangles::Collide(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, uint8 inActiveEdges, const SubShapeID &inSubShapeID2)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
// Scale triangle and transform it to the space of 1
|
|
Vec3 v0 = mTransform2To1 * (mScale2 * inV0);
|
|
Vec3 v1 = mTransform2To1 * (mScale2 * inV1);
|
|
Vec3 v2 = mTransform2To1 * (mScale2 * inV2);
|
|
|
|
// Calculate triangle normal
|
|
Vec3 triangle_normal = mScaleSign2 * (v1 - v0).Cross(v2 - v0);
|
|
|
|
// Backface check
|
|
bool back_facing = triangle_normal.Dot(v0) > 0.0f;
|
|
if (mCollideShapeSettings.mBackFaceMode == EBackFaceMode::IgnoreBackFaces && back_facing)
|
|
return;
|
|
|
|
// Get bounding box for triangle
|
|
AABox triangle_bbox = AABox::sFromTwoPoints(v0, v1);
|
|
triangle_bbox.Encapsulate(v2);
|
|
|
|
// Get intersection between triangle and shape box, if there is none, we're done
|
|
if (!triangle_bbox.Overlaps(mBoundsOf1))
|
|
return;
|
|
|
|
// Create triangle support function
|
|
TriangleConvexSupport triangle(v0, v1, v2);
|
|
|
|
// Perform collision detection
|
|
// Note: As we don't remember the penetration axis from the last iteration, and it is likely that the shape (A) we're colliding the triangle (B) against is in front of the triangle,
|
|
// and the penetration axis is the shortest distance along to push B out of collision, we use the inverse of the triangle normal as an initial penetration axis. This has been seen
|
|
// to improve performance by approx. 5% over using a fixed axis like (1, 0, 0).
|
|
Vec3 penetration_axis = -triangle_normal, point1, point2;
|
|
EPAPenetrationDepth pen_depth;
|
|
EPAPenetrationDepth::EStatus status;
|
|
|
|
// Get the support function
|
|
if (mShape1ExCvxRadius == nullptr)
|
|
mShape1ExCvxRadius = mShape1->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, mBufferExCvxRadius, mScale1);
|
|
|
|
// Perform GJK step
|
|
float max_separation_distance = mCollideShapeSettings.mMaxSeparationDistance;
|
|
status = pen_depth.GetPenetrationDepthStepGJK(*mShape1ExCvxRadius, mShape1ExCvxRadius->GetConvexRadius() + max_separation_distance, triangle, 0.0f, mCollideShapeSettings.mCollisionTolerance, penetration_axis, point1, point2);
|
|
|
|
// Check result of collision detection
|
|
if (status == EPAPenetrationDepth::EStatus::NotColliding)
|
|
return;
|
|
else if (status == EPAPenetrationDepth::EStatus::Indeterminate)
|
|
{
|
|
// Need to run expensive EPA algorithm
|
|
|
|
// We know we're overlapping at this point, so we can set the max separation distance to 0.
|
|
// Numerically it is possible that GJK finds that the shapes are overlapping but EPA finds that they're separated.
|
|
// In order to avoid this, we clamp the max separation distance to 1 so that we don't excessively inflate the shape,
|
|
// but we still inflate it enough to avoid the case where EPA misses the collision.
|
|
max_separation_distance = min(max_separation_distance, 1.0f);
|
|
|
|
// Get the support function
|
|
if (mShape1IncCvxRadius == nullptr)
|
|
mShape1IncCvxRadius = mShape1->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, mBufferIncCvxRadius, mScale1);
|
|
|
|
// Add convex radius
|
|
AddConvexRadius shape1_add_max_separation_distance(*mShape1IncCvxRadius, max_separation_distance);
|
|
|
|
// Perform EPA step
|
|
if (!pen_depth.GetPenetrationDepthStepEPA(shape1_add_max_separation_distance, triangle, mCollideShapeSettings.mPenetrationTolerance, penetration_axis, point1, point2))
|
|
return;
|
|
}
|
|
|
|
// Check if the penetration is bigger than the early out fraction
|
|
float penetration_depth = (point2 - point1).Length() - max_separation_distance;
|
|
if (-penetration_depth >= mCollector.GetEarlyOutFraction())
|
|
return;
|
|
|
|
// Correct point1 for the added separation distance
|
|
float penetration_axis_len = penetration_axis.Length();
|
|
if (penetration_axis_len > 0.0f)
|
|
point1 -= penetration_axis * (max_separation_distance / penetration_axis_len);
|
|
|
|
// Check if we have enabled active edge detection
|
|
if (mCollideShapeSettings.mActiveEdgeMode == EActiveEdgeMode::CollideOnlyWithActive && inActiveEdges != 0b111)
|
|
{
|
|
// Convert the active edge velocity hint to local space
|
|
Vec3 active_edge_movement_direction = mTransform1.Multiply3x3Transposed(mCollideShapeSettings.mActiveEdgeMovementDirection);
|
|
|
|
// Update the penetration axis to account for active edges
|
|
// Note that we flip the triangle normal as the penetration axis is pointing towards the triangle instead of away
|
|
penetration_axis = ActiveEdges::FixNormal(v0, v1, v2, back_facing? triangle_normal : -triangle_normal, inActiveEdges, point2, penetration_axis, active_edge_movement_direction);
|
|
}
|
|
|
|
// Convert to world space
|
|
point1 = mTransform1 * point1;
|
|
point2 = mTransform1 * point2;
|
|
Vec3 penetration_axis_world = mTransform1.Multiply3x3(penetration_axis);
|
|
|
|
// Create collision result
|
|
CollideShapeResult result(point1, point2, penetration_axis_world, penetration_depth, mSubShapeID1, inSubShapeID2, TransformedShape::sGetBodyID(mCollector.GetContext()));
|
|
|
|
// Gather faces
|
|
if (mCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
|
|
{
|
|
// Get supporting face of shape 1
|
|
mShape1->GetSupportingFace(SubShapeID(), -penetration_axis, mScale1, mTransform1, result.mShape1Face);
|
|
|
|
// Get face of the triangle
|
|
result.mShape2Face.resize(3);
|
|
result.mShape2Face[0] = mTransform1 * v0;
|
|
result.mShape2Face[1] = mTransform1 * v1;
|
|
result.mShape2Face[2] = mTransform1 * v2;
|
|
}
|
|
|
|
// Notify the collector
|
|
JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
|
|
mCollector.AddHit(result);
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|