224 lines
10 KiB
C++
224 lines
10 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Collision/CastSphereVsTriangles.h>
|
|
#include <Jolt/Physics/Collision/TransformedShape.h>
|
|
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
|
|
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
|
|
#include <Jolt/Physics/Collision/ActiveEdges.h>
|
|
#include <Jolt/Physics/Collision/NarrowPhaseStats.h>
|
|
#include <Jolt/Geometry/ClosestPoint.h>
|
|
#include <Jolt/Geometry/RaySphere.h>
|
|
#include <Jolt/Core/Profiler.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
CastSphereVsTriangles::CastSphereVsTriangles(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, CastShapeCollector &ioCollector) :
|
|
mStart(inShapeCast.mCenterOfMassStart.GetTranslation()),
|
|
mDirection(inShapeCast.mDirection),
|
|
mShapeCastSettings(inShapeCastSettings),
|
|
mCenterOfMassTransform2(inCenterOfMassTransform2),
|
|
mScale(inScale),
|
|
mSubShapeIDCreator1(inSubShapeIDCreator1),
|
|
mCollector(ioCollector)
|
|
{
|
|
// Cast to sphere shape
|
|
JPH_ASSERT(inShapeCast.mShape->GetSubType() == EShapeSubType::Sphere);
|
|
const SphereShape *sphere = static_cast<const SphereShape *>(inShapeCast.mShape);
|
|
|
|
// Scale the radius
|
|
mRadius = sphere->GetRadius() * abs(inShapeCast.mScale.GetX());
|
|
|
|
// Determine if shape is inside out or not
|
|
mScaleSign = ScaleHelpers::IsInsideOut(inScale)? -1.0f : 1.0f;
|
|
}
|
|
|
|
void CastSphereVsTriangles::AddHit(bool inBackFacing, const SubShapeID &inSubShapeID2, float inFraction, Vec3Arg inContactPointA, Vec3Arg inContactPointB, Vec3Arg inContactNormal)
|
|
{
|
|
// Convert to world space
|
|
Vec3 contact_point_a = mCenterOfMassTransform2 * (mStart + inContactPointA);
|
|
Vec3 contact_point_b = mCenterOfMassTransform2 * (mStart + inContactPointB);
|
|
Vec3 contact_normal_world = mCenterOfMassTransform2.Multiply3x3(inContactNormal);
|
|
|
|
// Its a hit, store the sub shape id's
|
|
ShapeCastResult result(inFraction, contact_point_a, contact_point_b, contact_normal_world, inBackFacing, mSubShapeIDCreator1.GetID(), inSubShapeID2, TransformedShape::sGetBodyID(mCollector.GetContext()));
|
|
|
|
// Note: We don't gather faces here because that's only useful if both shapes have a face. Since the sphere always has only 1 contact point, the manifold is always a point.
|
|
|
|
JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
|
|
mCollector.AddHit(result);
|
|
}
|
|
|
|
void CastSphereVsTriangles::AddHitWithActiveEdgeDetection(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, bool inBackFacing, Vec3Arg inTriangleNormal, uint8 inActiveEdges, const SubShapeID &inSubShapeID2, float inFraction, Vec3Arg inContactPointA, Vec3Arg inContactPointB, Vec3Arg inContactNormal)
|
|
{
|
|
// Check if we have enabled active edge detection
|
|
Vec3 contact_normal = inContactNormal;
|
|
if (mShapeCastSettings.mActiveEdgeMode == EActiveEdgeMode::CollideOnlyWithActive && inActiveEdges != 0b111)
|
|
{
|
|
// Convert the active edge velocity hint to local space
|
|
Vec3 active_edge_movement_direction = mCenterOfMassTransform2.Multiply3x3Transposed(mShapeCastSettings.mActiveEdgeMovementDirection);
|
|
|
|
// Update the contact normal to account for active edges
|
|
// Note that we flip the triangle normal as the penetration axis is pointing towards the triangle instead of away
|
|
contact_normal = ActiveEdges::FixNormal(inV0, inV1, inV2, inBackFacing? inTriangleNormal : -inTriangleNormal, inActiveEdges, inContactPointB, inContactNormal, active_edge_movement_direction);
|
|
}
|
|
|
|
AddHit(inBackFacing, inSubShapeID2, inFraction, inContactPointA, inContactPointB, contact_normal);
|
|
}
|
|
|
|
// This is a simplified version of the ray cylinder test from: Real Time Collision Detection - Christer Ericson
|
|
// Chapter 5.3.7, page 194-197. Some conditions have been removed as we're not interested in hitting the caps of the cylinder.
|
|
// Note that the ray origin is assumed to be the origin here.
|
|
float CastSphereVsTriangles::RayCylinder(Vec3Arg inRayDirection, Vec3Arg inCylinderA, Vec3Arg inCylinderB, float inRadius) const
|
|
{
|
|
// Calculate cylinder axis
|
|
Vec3 axis = inCylinderB - inCylinderA;
|
|
|
|
// Make ray start relative to cylinder side A (moving cylinder A to the origin)
|
|
Vec3 start = -inCylinderA;
|
|
|
|
// Test if segment is fully on the A side of the cylinder
|
|
float start_dot_axis = start.Dot(axis);
|
|
float direction_dot_axis = inRayDirection.Dot(axis);
|
|
float end_dot_axis = start_dot_axis + direction_dot_axis;
|
|
if (start_dot_axis < 0.0f && end_dot_axis < 0.0f)
|
|
return FLT_MAX;
|
|
|
|
// Test if segment is fully on the B side of the cylinder
|
|
float axis_len_sq = axis.LengthSq();
|
|
if (start_dot_axis > axis_len_sq && end_dot_axis > axis_len_sq)
|
|
return FLT_MAX;
|
|
|
|
// Calculate a, b and c, the factors for quadratic equation
|
|
// We're basically solving the ray: x = start + direction * t
|
|
// The closest point to x on the segment A B is: w = (x . axis) * axis / (axis . axis)
|
|
// The distance between x and w should be radius: (x - w) . (x - w) = radius^2
|
|
// Solving this gives the following:
|
|
float a = axis_len_sq * inRayDirection.LengthSq() - Square(direction_dot_axis);
|
|
if (abs(a) < 1.0e-6f)
|
|
return FLT_MAX; // Segment runs parallel to cylinder axis, stop processing, we will either hit at fraction = 0 or we'll hit a vertex
|
|
float b = axis_len_sq * start.Dot(inRayDirection) - direction_dot_axis * start_dot_axis; // should be multiplied by 2, instead we'll divide a and c by 2 when we solve the quadratic equation
|
|
float c = axis_len_sq * (start.LengthSq() - Square(inRadius)) - Square(start_dot_axis);
|
|
float det = Square(b) - a * c; // normally 4 * a * c but since both a and c need to be divided by 2 we lose the 4
|
|
if (det < 0.0f)
|
|
return FLT_MAX; // No solution to quadratic equation
|
|
|
|
// Solve fraction t where the ray hits the cylinder
|
|
float t = -(b + sqrt(det)) / a; // normally divided by 2 * a but since a should be divided by 2 we lose the 2
|
|
if (t < 0.0f || t > 1.0f)
|
|
return FLT_MAX; // Intersection lies outside segment
|
|
if (start_dot_axis + t * direction_dot_axis < 0.0f || start_dot_axis + t * direction_dot_axis > axis_len_sq)
|
|
return FLT_MAX; // Intersection outside the end point of the cylinder, stop processing, we will possibly hit a vertex
|
|
return t;
|
|
}
|
|
|
|
void CastSphereVsTriangles::Cast(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, uint8 inActiveEdges, const SubShapeID &inSubShapeID2)
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
// Scale triangle and make it relative to the start of the cast
|
|
Vec3 v0 = mScale * inV0 - mStart;
|
|
Vec3 v1 = mScale * inV1 - mStart;
|
|
Vec3 v2 = mScale * inV2 - mStart;
|
|
|
|
// Calculate triangle normal
|
|
Vec3 triangle_normal = mScaleSign * (v1 - v0).Cross(v2 - v0);
|
|
float triangle_normal_len = triangle_normal.Length();
|
|
if (triangle_normal_len == 0.0f)
|
|
return; // Degenerate triangle
|
|
triangle_normal /= triangle_normal_len;
|
|
|
|
// Backface check
|
|
float normal_dot_direction = triangle_normal.Dot(mDirection);
|
|
bool back_facing = normal_dot_direction > 0.0f;
|
|
if (mShapeCastSettings.mBackFaceModeTriangles == EBackFaceMode::IgnoreBackFaces && back_facing)
|
|
return;
|
|
|
|
// Test if distance between the sphere and plane of triangle is smaller or equal than the radius
|
|
if (abs(v0.Dot(triangle_normal)) <= mRadius)
|
|
{
|
|
// Check if the sphere intersects at the start of the cast
|
|
uint32 closest_feature;
|
|
Vec3 q = ClosestPoint::GetClosestPointOnTriangle(v0, v1, v2, closest_feature);
|
|
float q_len_sq = q.LengthSq();
|
|
if (q_len_sq <= Square(mRadius))
|
|
{
|
|
// Early out if this hit is deeper than the collector's early out value
|
|
float q_len = sqrt(q_len_sq);
|
|
float penetration_depth = mRadius - q_len;
|
|
if (-penetration_depth >= mCollector.GetEarlyOutFraction())
|
|
return;
|
|
|
|
// Generate contact point
|
|
Vec3 contact_normal = q_len > 0.0f? q / q_len : Vec3::sAxisY();
|
|
Vec3 contact_point_a = q + contact_normal * penetration_depth;
|
|
Vec3 contact_point_b = q;
|
|
AddHitWithActiveEdgeDetection(v0, v1, v2, back_facing, triangle_normal, inActiveEdges, inSubShapeID2, 0.0f, contact_point_a, contact_point_b, contact_normal);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Check if cast is not parallel to the plane of the triangle
|
|
float abs_normal_dot_direction = abs(normal_dot_direction);
|
|
if (abs_normal_dot_direction > 1.0e-6f)
|
|
{
|
|
// Calculate the point on the sphere that will hit the triangle's plane first and calculate a fraction where it will do so
|
|
Vec3 d = Sign(normal_dot_direction) * mRadius * triangle_normal;
|
|
float plane_intersection = (v0 - d).Dot(triangle_normal) / normal_dot_direction;
|
|
|
|
// Check if sphere will hit in the interval that we're interested in
|
|
if (plane_intersection * abs_normal_dot_direction < -mRadius // Sphere hits the plane before the sweep, cannot intersect
|
|
|| plane_intersection >= mCollector.GetEarlyOutFraction()) // Sphere hits the plane after the sweep / early out fraction, cannot intersect
|
|
return;
|
|
|
|
// We can only report an interior hit if we're hitting the plane during our sweep and not before
|
|
if (plane_intersection >= 0.0f)
|
|
{
|
|
// Calculate the point of contact on the plane
|
|
Vec3 p = d + plane_intersection * mDirection;
|
|
|
|
// Check if this is an interior point
|
|
float u, v, w;
|
|
if (ClosestPoint::GetBaryCentricCoordinates(v0 - p, v1 - p, v2 - p, u, v, w)
|
|
&& u >= 0.0f && v >= 0.0f && w >= 0.0f)
|
|
{
|
|
// Interior point, we found the collision point. We don't need to check active edges.
|
|
AddHit(back_facing, inSubShapeID2, plane_intersection, p, p, back_facing? triangle_normal : -triangle_normal);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test 3 edges
|
|
float fraction = RayCylinder(mDirection, v0, v1, mRadius);
|
|
fraction = min(fraction, RayCylinder(mDirection, v1, v2, mRadius));
|
|
fraction = min(fraction, RayCylinder(mDirection, v2, v0, mRadius));
|
|
|
|
// Test 3 vertices
|
|
fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v0, mRadius));
|
|
fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v1, mRadius));
|
|
fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v2, mRadius));
|
|
|
|
// Check if we have a collision
|
|
JPH_ASSERT(fraction >= 0.0f);
|
|
if (fraction < mCollector.GetEarlyOutFraction())
|
|
{
|
|
// Calculate the center of the sphere at the point of contact
|
|
Vec3 p = fraction * mDirection;
|
|
|
|
// Get contact point and normal
|
|
uint32 closest_feature;
|
|
Vec3 q = ClosestPoint::GetClosestPointOnTriangle(v0 - p, v1 - p, v2 - p, closest_feature);
|
|
Vec3 contact_normal = q.Normalized();
|
|
Vec3 contact_point_ab = p + q;
|
|
AddHitWithActiveEdgeDetection(v0, v1, v2, back_facing, triangle_normal, inActiveEdges, inSubShapeID2, fraction, contact_point_ab, contact_point_ab, contact_normal);
|
|
}
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|