godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Character/CharacterVirtual.cpp
2025-04-12 18:40:44 +02:00

1892 lines
75 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Character/CharacterVirtual.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/Body/BodyCreationSettings.h>
#include <Jolt/Physics/PhysicsSystem.h>
#include <Jolt/Physics/Collision/ShapeCast.h>
#include <Jolt/Physics/Collision/CollideShape.h>
#include <Jolt/Physics/Collision/Shape/RotatedTranslatedShape.h>
#include <Jolt/Physics/Collision/Shape/ScaledShape.h>
#include <Jolt/Physics/Collision/CollisionDispatch.h>
#include <Jolt/Core/QuickSort.h>
#include <Jolt/Core/ScopeExit.h>
#include <Jolt/Geometry/ConvexSupport.h>
#include <Jolt/Geometry/GJKClosestPoint.h>
#include <Jolt/Geometry/RayAABox.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
void CharacterVsCharacterCollisionSimple::Remove(const CharacterVirtual *inCharacter)
{
Array<CharacterVirtual *>::iterator i = std::find(mCharacters.begin(), mCharacters.end(), inCharacter);
if (i != mCharacters.end())
mCharacters.erase(i);
}
void CharacterVsCharacterCollisionSimple::CollideCharacter(const CharacterVirtual *inCharacter, RMat44Arg inCenterOfMassTransform, const CollideShapeSettings &inCollideShapeSettings, RVec3Arg inBaseOffset, CollideShapeCollector &ioCollector) const
{
// Make shape 1 relative to inBaseOffset
Mat44 transform1 = inCenterOfMassTransform.PostTranslated(-inBaseOffset).ToMat44();
const Shape *shape1 = inCharacter->GetShape();
CollideShapeSettings settings = inCollideShapeSettings;
// Get bounds for character
AABox bounds1 = shape1->GetWorldSpaceBounds(transform1, Vec3::sOne());
// Iterate over all characters
for (const CharacterVirtual *c : mCharacters)
if (c != inCharacter
&& !ioCollector.ShouldEarlyOut())
{
// Make shape 2 relative to inBaseOffset
Mat44 transform2 = c->GetCenterOfMassTransform().PostTranslated(-inBaseOffset).ToMat44();
// We need to add the padding of character 2 so that we will detect collision with its outer shell
settings.mMaxSeparationDistance = inCollideShapeSettings.mMaxSeparationDistance + c->GetCharacterPadding();
// Check if the bounding boxes of the characters overlap
const Shape *shape2 = c->GetShape();
AABox bounds2 = shape2->GetWorldSpaceBounds(transform2, Vec3::sOne());
bounds2.ExpandBy(Vec3::sReplicate(settings.mMaxSeparationDistance));
if (!bounds1.Overlaps(bounds2))
continue;
// Collector needs to know which character we're colliding with
ioCollector.SetUserData(reinterpret_cast<uint64>(c));
// Note that this collides against the character's shape without padding, this will be corrected for in CharacterVirtual::GetContactsAtPosition
CollisionDispatch::sCollideShapeVsShape(shape1, shape2, Vec3::sOne(), Vec3::sOne(), transform1, transform2, SubShapeIDCreator(), SubShapeIDCreator(), settings, ioCollector);
}
// Reset the user data
ioCollector.SetUserData(0);
}
void CharacterVsCharacterCollisionSimple::CastCharacter(const CharacterVirtual *inCharacter, RMat44Arg inCenterOfMassTransform, Vec3Arg inDirection, const ShapeCastSettings &inShapeCastSettings, RVec3Arg inBaseOffset, CastShapeCollector &ioCollector) const
{
// Convert shape cast relative to inBaseOffset
Mat44 transform1 = inCenterOfMassTransform.PostTranslated(-inBaseOffset).ToMat44();
ShapeCast shape_cast(inCharacter->GetShape(), Vec3::sOne(), transform1, inDirection);
// Get world space bounds of the character in the form of center and extent
Vec3 origin = shape_cast.mShapeWorldBounds.GetCenter();
Vec3 extents = shape_cast.mShapeWorldBounds.GetExtent();
// Iterate over all characters
for (const CharacterVirtual *c : mCharacters)
if (c != inCharacter
&& !ioCollector.ShouldEarlyOut())
{
// Make shape 2 relative to inBaseOffset
Mat44 transform2 = c->GetCenterOfMassTransform().PostTranslated(-inBaseOffset).ToMat44();
// Sweep bounding box of the character against the bounding box of the other character to see if they can collide
const Shape *shape2 = c->GetShape();
AABox bounds2 = shape2->GetWorldSpaceBounds(transform2, Vec3::sOne());
bounds2.ExpandBy(extents);
if (!RayAABoxHits(origin, inDirection, bounds2.mMin, bounds2.mMax))
continue;
// Collector needs to know which character we're colliding with
ioCollector.SetUserData(reinterpret_cast<uint64>(c));
// Note that this collides against the character's shape without padding, this will be corrected for in CharacterVirtual::GetFirstContactForSweep
CollisionDispatch::sCastShapeVsShapeWorldSpace(shape_cast, inShapeCastSettings, shape2, Vec3::sOne(), { }, transform2, SubShapeIDCreator(), SubShapeIDCreator(), ioCollector);
}
// Reset the user data
ioCollector.SetUserData(0);
}
CharacterVirtual::CharacterVirtual(const CharacterVirtualSettings *inSettings, RVec3Arg inPosition, QuatArg inRotation, uint64 inUserData, PhysicsSystem *inSystem) :
CharacterBase(inSettings, inSystem),
mID(inSettings->mID),
mBackFaceMode(inSettings->mBackFaceMode),
mPredictiveContactDistance(inSettings->mPredictiveContactDistance),
mMaxCollisionIterations(inSettings->mMaxCollisionIterations),
mMaxConstraintIterations(inSettings->mMaxConstraintIterations),
mMinTimeRemaining(inSettings->mMinTimeRemaining),
mCollisionTolerance(inSettings->mCollisionTolerance),
mCharacterPadding(inSettings->mCharacterPadding),
mMaxNumHits(inSettings->mMaxNumHits),
mHitReductionCosMaxAngle(inSettings->mHitReductionCosMaxAngle),
mPenetrationRecoverySpeed(inSettings->mPenetrationRecoverySpeed),
mEnhancedInternalEdgeRemoval(inSettings->mEnhancedInternalEdgeRemoval),
mShapeOffset(inSettings->mShapeOffset),
mPosition(inPosition),
mRotation(inRotation),
mUserData(inUserData)
{
JPH_ASSERT(!mID.IsInvalid());
// Copy settings
SetMaxStrength(inSettings->mMaxStrength);
SetMass(inSettings->mMass);
// Create an inner rigid body if requested
if (inSettings->mInnerBodyShape != nullptr)
{
BodyCreationSettings settings(inSettings->mInnerBodyShape, GetInnerBodyPosition(), mRotation, EMotionType::Kinematic, inSettings->mInnerBodyLayer);
settings.mAllowSleeping = false; // Disable sleeping so that we will receive sensor callbacks
settings.mUserData = inUserData;
const Body *inner_body;
BodyInterface &bi = inSystem->GetBodyInterface();
if (inSettings->mInnerBodyIDOverride.IsInvalid())
inner_body = bi.CreateBody(settings);
else
inner_body = bi.CreateBodyWithID(inSettings->mInnerBodyIDOverride, settings);
if (inner_body != nullptr)
{
mInnerBodyID = inner_body->GetID();
bi.AddBody(mInnerBodyID, EActivation::Activate);
}
}
}
CharacterVirtual::~CharacterVirtual()
{
if (!mInnerBodyID.IsInvalid())
{
mSystem->GetBodyInterface().RemoveBody(mInnerBodyID);
mSystem->GetBodyInterface().DestroyBody(mInnerBodyID);
}
}
void CharacterVirtual::UpdateInnerBodyTransform()
{
if (!mInnerBodyID.IsInvalid())
mSystem->GetBodyInterface().SetPositionAndRotation(mInnerBodyID, GetInnerBodyPosition(), mRotation, EActivation::DontActivate);
}
void CharacterVirtual::GetAdjustedBodyVelocity(const Body& inBody, Vec3 &outLinearVelocity, Vec3 &outAngularVelocity) const
{
// Get real velocity of body
if (!inBody.IsStatic())
{
const MotionProperties *mp = inBody.GetMotionPropertiesUnchecked();
outLinearVelocity = mp->GetLinearVelocity();
outAngularVelocity = mp->GetAngularVelocity();
}
else
{
outLinearVelocity = outAngularVelocity = Vec3::sZero();
}
// Allow application to override
if (mListener != nullptr)
mListener->OnAdjustBodyVelocity(this, inBody, outLinearVelocity, outAngularVelocity);
}
Vec3 CharacterVirtual::CalculateCharacterGroundVelocity(RVec3Arg inCenterOfMass, Vec3Arg inLinearVelocity, Vec3Arg inAngularVelocity, float inDeltaTime) const
{
// Get angular velocity
float angular_velocity_len_sq = inAngularVelocity.LengthSq();
if (angular_velocity_len_sq < 1.0e-12f)
return inLinearVelocity;
float angular_velocity_len = sqrt(angular_velocity_len_sq);
// Calculate the rotation that the object will make in the time step
Quat rotation = Quat::sRotation(inAngularVelocity / angular_velocity_len, angular_velocity_len * inDeltaTime);
// Calculate where the new character position will be
RVec3 new_position = inCenterOfMass + rotation * Vec3(mPosition - inCenterOfMass);
// Calculate the velocity
return inLinearVelocity + Vec3(new_position - mPosition) / inDeltaTime;
}
template <class taCollector>
void CharacterVirtual::sFillContactProperties(const CharacterVirtual *inCharacter, Contact &outContact, const Body &inBody, Vec3Arg inUp, RVec3Arg inBaseOffset, const taCollector &inCollector, const CollideShapeResult &inResult)
{
// Get adjusted body velocity
Vec3 linear_velocity, angular_velocity;
inCharacter->GetAdjustedBodyVelocity(inBody, linear_velocity, angular_velocity);
outContact.mPosition = inBaseOffset + inResult.mContactPointOn2;
outContact.mLinearVelocity = linear_velocity + angular_velocity.Cross(Vec3(outContact.mPosition - inBody.GetCenterOfMassPosition())); // Calculate point velocity
outContact.mContactNormal = -inResult.mPenetrationAxis.NormalizedOr(Vec3::sZero());
outContact.mSurfaceNormal = inCollector.GetContext()->GetWorldSpaceSurfaceNormal(inResult.mSubShapeID2, outContact.mPosition);
if (outContact.mContactNormal.Dot(outContact.mSurfaceNormal) < 0.0f)
outContact.mSurfaceNormal = -outContact.mSurfaceNormal; // Flip surface normal if we're hitting a back face
if (outContact.mContactNormal.Dot(inUp) > outContact.mSurfaceNormal.Dot(inUp))
outContact.mSurfaceNormal = outContact.mContactNormal; // Replace surface normal with contact normal if the contact normal is pointing more upwards
outContact.mDistance = -inResult.mPenetrationDepth;
outContact.mBodyB = inResult.mBodyID2;
outContact.mSubShapeIDB = inResult.mSubShapeID2;
outContact.mMotionTypeB = inBody.GetMotionType();
outContact.mIsSensorB = inBody.IsSensor();
outContact.mUserData = inBody.GetUserData();
outContact.mMaterial = inCollector.GetContext()->GetMaterial(inResult.mSubShapeID2);
}
void CharacterVirtual::sFillCharacterContactProperties(Contact &outContact, const CharacterVirtual *inOtherCharacter, RVec3Arg inBaseOffset, const CollideShapeResult &inResult)
{
outContact.mPosition = inBaseOffset + inResult.mContactPointOn2;
outContact.mLinearVelocity = inOtherCharacter->GetLinearVelocity();
outContact.mSurfaceNormal = outContact.mContactNormal = -inResult.mPenetrationAxis.NormalizedOr(Vec3::sZero());
outContact.mDistance = -inResult.mPenetrationDepth;
outContact.mCharacterIDB = inOtherCharacter->GetID();
outContact.mCharacterB = inOtherCharacter;
outContact.mSubShapeIDB = inResult.mSubShapeID2;
outContact.mMotionTypeB = EMotionType::Kinematic; // Other character is kinematic, we can't directly move it
outContact.mIsSensorB = false;
outContact.mUserData = inOtherCharacter->GetUserData();
outContact.mMaterial = PhysicsMaterial::sDefault;
}
void CharacterVirtual::ContactCollector::AddHit(const CollideShapeResult &inResult)
{
// If we exceed our contact limit, try to clean up near-duplicate contacts
if (mContacts.size() == mMaxHits)
{
// Flag that we hit this code path
mMaxHitsExceeded = true;
// Check if we can do reduction
if (mHitReductionCosMaxAngle > -1.0f)
{
// Loop all contacts and find similar contacts
for (int i = (int)mContacts.size() - 1; i >= 0; --i)
{
Contact &contact_i = mContacts[i];
for (int j = i - 1; j >= 0; --j)
{
Contact &contact_j = mContacts[j];
if (contact_i.IsSameBody(contact_j)
&& contact_i.mContactNormal.Dot(contact_j.mContactNormal) > mHitReductionCosMaxAngle) // Very similar contact normals
{
// Remove the contact with the biggest distance
bool i_is_last = i == (int)mContacts.size() - 1;
if (contact_i.mDistance > contact_j.mDistance)
{
// Remove i
if (!i_is_last)
contact_i = mContacts.back();
mContacts.pop_back();
// Break out of the loop, i is now an element that we already processed
break;
}
else
{
// Remove j
contact_j = mContacts.back();
mContacts.pop_back();
// If i was the last element, we just moved it into position j. Break out of the loop, we'll see it again later.
if (i_is_last)
break;
}
}
}
}
}
if (mContacts.size() == mMaxHits)
{
// There are still too many hits, give up!
ForceEarlyOut();
return;
}
}
if (inResult.mBodyID2.IsInvalid())
{
// Assuming this is a hit against another character
JPH_ASSERT(mOtherCharacter != nullptr);
// Create contact with other character
mContacts.emplace_back();
Contact &contact = mContacts.back();
sFillCharacterContactProperties(contact, mOtherCharacter, mBaseOffset, inResult);
contact.mFraction = 0.0f;
}
else
{
// Create contact with other body
BodyLockRead lock(mSystem->GetBodyLockInterface(), inResult.mBodyID2);
if (lock.SucceededAndIsInBroadPhase())
{
mContacts.emplace_back();
Contact &contact = mContacts.back();
sFillContactProperties(mCharacter, contact, lock.GetBody(), mUp, mBaseOffset, *this, inResult);
contact.mFraction = 0.0f;
}
}
}
void CharacterVirtual::ContactCastCollector::AddHit(const ShapeCastResult &inResult)
{
if (inResult.mFraction < mContact.mFraction // Since we're doing checks against the world and against characters, we may get a hit with a higher fraction than the previous hit
&& inResult.mFraction > 0.0f // Ignore collisions at fraction = 0
&& inResult.mPenetrationAxis.Dot(mDisplacement) > 0.0f) // Ignore penetrations that we're moving away from
{
// Test if this contact should be ignored
for (const ContactKey &c : mIgnoredContacts)
if (c.mBodyB == inResult.mBodyID2 && c.mSubShapeIDB == inResult.mSubShapeID2)
return;
Contact contact;
if (inResult.mBodyID2.IsInvalid())
{
// Assuming this is a hit against another character
JPH_ASSERT(mOtherCharacter != nullptr);
// Create contact with other character
sFillCharacterContactProperties(contact, mOtherCharacter, mBaseOffset, inResult);
}
else
{
// Lock body only while we fetch contact properties
BodyLockRead lock(mSystem->GetBodyLockInterface(), inResult.mBodyID2);
if (!lock.SucceededAndIsInBroadPhase())
return;
// Sweeps don't result in OnContactAdded callbacks so we can ignore sensors here
const Body &body = lock.GetBody();
if (body.IsSensor())
return;
// Convert the hit result into a contact
sFillContactProperties(mCharacter, contact, body, mUp, mBaseOffset, *this, inResult);
}
contact.mFraction = inResult.mFraction;
// Check if the contact that will make us penetrate more than the allowed tolerance
if (contact.mDistance + contact.mContactNormal.Dot(mDisplacement) < -mCharacter->mCollisionTolerance
&& mCharacter->ValidateContact(contact))
{
mContact = contact;
UpdateEarlyOutFraction(contact.mFraction);
}
}
}
void CharacterVirtual::CheckCollision(RVec3Arg inPosition, QuatArg inRotation, Vec3Arg inMovementDirection, float inMaxSeparationDistance, const Shape *inShape, RVec3Arg inBaseOffset, CollideShapeCollector &ioCollector, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter) const
{
// Query shape transform
RMat44 transform = GetCenterOfMassTransform(inPosition, inRotation, inShape);
// Settings for collide shape
CollideShapeSettings settings;
settings.mBackFaceMode = mBackFaceMode;
settings.mActiveEdgeMovementDirection = inMovementDirection;
settings.mMaxSeparationDistance = mCharacterPadding + inMaxSeparationDistance;
settings.mActiveEdgeMode = EActiveEdgeMode::CollideOnlyWithActive;
// Body filter
IgnoreSingleBodyFilterChained body_filter(mInnerBodyID, inBodyFilter);
// Select the right function
auto collide_shape_function = mEnhancedInternalEdgeRemoval? &NarrowPhaseQuery::CollideShapeWithInternalEdgeRemoval : &NarrowPhaseQuery::CollideShape;
// Collide shape
(mSystem->GetNarrowPhaseQuery().*collide_shape_function)(inShape, Vec3::sOne(), transform, settings, inBaseOffset, ioCollector, inBroadPhaseLayerFilter, inObjectLayerFilter, body_filter, inShapeFilter);
// Also collide with other characters
if (mCharacterVsCharacterCollision != nullptr)
{
ioCollector.SetContext(nullptr); // We're no longer colliding with a transformed shape, reset
mCharacterVsCharacterCollision->CollideCharacter(this, transform, settings, inBaseOffset, ioCollector);
}
}
void CharacterVirtual::GetContactsAtPosition(RVec3Arg inPosition, Vec3Arg inMovementDirection, const Shape *inShape, TempContactList &outContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter) const
{
// Remove previous results
outContacts.clear();
// Body filter
IgnoreSingleBodyFilterChained body_filter(mInnerBodyID, inBodyFilter);
// Collide shape
ContactCollector collector(mSystem, this, mMaxNumHits, mHitReductionCosMaxAngle, mUp, mPosition, outContacts);
CheckCollision(inPosition, mRotation, inMovementDirection, mPredictiveContactDistance, inShape, mPosition, collector, inBroadPhaseLayerFilter, inObjectLayerFilter, body_filter, inShapeFilter);
// The broadphase bounding boxes will not be deterministic, which means that the order in which the contacts are received by the collector is not deterministic.
// Therefore we need to sort the contacts to preserve determinism. Note that currently this will fail if we exceed mMaxNumHits hits.
QuickSort(outContacts.begin(), outContacts.end(), ContactOrderingPredicate());
// Flag if we exceeded the max number of hits
mMaxHitsExceeded = collector.mMaxHitsExceeded;
// Reduce distance to contact by padding to ensure we stay away from the object by a little margin
// (this will make collision detection cheaper - especially for sweep tests as they won't hit the surface if we're properly sliding)
for (Contact &c : outContacts)
{
c.mDistance -= mCharacterPadding;
if (c.mCharacterB != nullptr)
c.mDistance -= c.mCharacterB->mCharacterPadding;
}
}
void CharacterVirtual::RemoveConflictingContacts(TempContactList &ioContacts, IgnoredContactList &outIgnoredContacts) const
{
// Only use this algorithm if we're penetrating further than this (due to numerical precision issues we can always penetrate a little bit and we don't want to discard contacts if they just have a tiny penetration)
// We do need to account for padding (see GetContactsAtPosition) that is removed from the contact distances, to compensate we add it to the cMinRequiredPenetration
const float cMinRequiredPenetration = 1.25f * mCharacterPadding;
// Discard conflicting penetrating contacts
for (size_t c1 = 0; c1 < ioContacts.size(); c1++)
{
Contact &contact1 = ioContacts[c1];
if (contact1.mDistance <= -cMinRequiredPenetration) // Only for penetrations
for (size_t c2 = c1 + 1; c2 < ioContacts.size(); c2++)
{
Contact &contact2 = ioContacts[c2];
if (contact1.IsSameBody(contact2)
&& contact2.mDistance <= -cMinRequiredPenetration // Only for penetrations
&& contact1.mContactNormal.Dot(contact2.mContactNormal) < 0.0f) // Only opposing normals
{
// Discard contacts with the least amount of penetration
if (contact1.mDistance < contact2.mDistance)
{
// Discard the 2nd contact
outIgnoredContacts.emplace_back(contact2);
ioContacts.erase(ioContacts.begin() + c2);
c2--;
}
else
{
// Discard the first contact
outIgnoredContacts.emplace_back(contact1);
ioContacts.erase(ioContacts.begin() + c1);
c1--;
break;
}
}
}
}
}
bool CharacterVirtual::ValidateContact(const Contact &inContact) const
{
if (mListener == nullptr)
return true;
if (inContact.mCharacterB != nullptr)
return mListener->OnCharacterContactValidate(this, inContact.mCharacterB, inContact.mSubShapeIDB);
else
return mListener->OnContactValidate(this, inContact.mBodyB, inContact.mSubShapeIDB);
}
void CharacterVirtual::ContactAdded(const Contact &inContact, CharacterContactSettings &ioSettings)
{
if (mListener != nullptr)
{
// Check if we already know this contact
ListenerContacts::iterator it = mListenerContacts.find(inContact);
if (it != mListenerContacts.end())
{
// Max 1 contact persisted callback
if (++it->second.mCount == 1)
{
if (inContact.mCharacterB != nullptr)
mListener->OnCharacterContactPersisted(this, inContact.mCharacterB, inContact.mSubShapeIDB, inContact.mPosition, -inContact.mContactNormal, ioSettings);
else
mListener->OnContactPersisted(this, inContact.mBodyB, inContact.mSubShapeIDB, inContact.mPosition, -inContact.mContactNormal, ioSettings);
it->second.mSettings = ioSettings;
}
else
{
// Reuse the settings from the last call
ioSettings = it->second.mSettings;
}
}
else
{
// New contact
if (inContact.mCharacterB != nullptr)
mListener->OnCharacterContactAdded(this, inContact.mCharacterB, inContact.mSubShapeIDB, inContact.mPosition, -inContact.mContactNormal, ioSettings);
else
mListener->OnContactAdded(this, inContact.mBodyB, inContact.mSubShapeIDB, inContact.mPosition, -inContact.mContactNormal, ioSettings);
mListenerContacts.insert(ListenerContacts::value_type(inContact, ioSettings));
}
}
}
template <class T>
inline static bool sCorrectFractionForCharacterPadding(const Shape *inShape, Mat44Arg inStart, Vec3Arg inDisplacement, Vec3Arg inScale, const T &inPolygon, float &ioFraction)
{
if (inShape->GetType() == EShapeType::Convex)
{
// Get the support function for the shape we're casting
const ConvexShape *convex_shape = static_cast<const ConvexShape *>(inShape);
ConvexShape::SupportBuffer buffer;
const ConvexShape::Support *support = convex_shape->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, inScale);
// Cast the shape against the polygon
GJKClosestPoint gjk;
return gjk.CastShape(inStart, inDisplacement, cDefaultCollisionTolerance, *support, inPolygon, ioFraction);
}
else if (inShape->GetSubType() == EShapeSubType::RotatedTranslated)
{
const RotatedTranslatedShape *rt_shape = static_cast<const RotatedTranslatedShape *>(inShape);
return sCorrectFractionForCharacterPadding(rt_shape->GetInnerShape(), inStart * Mat44::sRotation(rt_shape->GetRotation()), inDisplacement, rt_shape->TransformScale(inScale), inPolygon, ioFraction);
}
else if (inShape->GetSubType() == EShapeSubType::Scaled)
{
const ScaledShape *scaled_shape = static_cast<const ScaledShape *>(inShape);
return sCorrectFractionForCharacterPadding(scaled_shape->GetInnerShape(), inStart, inDisplacement, inScale * scaled_shape->GetScale(), inPolygon, ioFraction);
}
else
{
JPH_ASSERT(false, "Not supported yet!");
return false;
}
}
bool CharacterVirtual::GetFirstContactForSweep(RVec3Arg inPosition, Vec3Arg inDisplacement, Contact &outContact, const IgnoredContactList &inIgnoredContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter) const
{
// Too small distance -> skip checking
float displacement_len_sq = inDisplacement.LengthSq();
if (displacement_len_sq < 1.0e-8f)
return false;
// Calculate start transform
RMat44 start = GetCenterOfMassTransform(inPosition, mRotation, mShape);
// Settings for the cast
ShapeCastSettings settings;
settings.mBackFaceModeTriangles = mBackFaceMode;
settings.mBackFaceModeConvex = EBackFaceMode::IgnoreBackFaces;
settings.mActiveEdgeMode = EActiveEdgeMode::CollideOnlyWithActive;
settings.mUseShrunkenShapeAndConvexRadius = true;
settings.mReturnDeepestPoint = false;
// Calculate how much extra fraction we need to add to the cast to account for the character padding
float character_padding_fraction = mCharacterPadding / sqrt(displacement_len_sq);
// Body filter
IgnoreSingleBodyFilterChained body_filter(mInnerBodyID, inBodyFilter);
// Cast shape
Contact contact;
contact.mFraction = 1.0f + character_padding_fraction;
RVec3 base_offset = start.GetTranslation();
ContactCastCollector collector(mSystem, this, inDisplacement, mUp, inIgnoredContacts, base_offset, contact);
collector.ResetEarlyOutFraction(contact.mFraction);
RShapeCast shape_cast(mShape, Vec3::sOne(), start, inDisplacement);
mSystem->GetNarrowPhaseQuery().CastShape(shape_cast, settings, base_offset, collector, inBroadPhaseLayerFilter, inObjectLayerFilter, body_filter, inShapeFilter);
// Also collide with other characters
if (mCharacterVsCharacterCollision != nullptr)
{
collector.SetContext(nullptr); // We're no longer colliding with a transformed shape, reset
mCharacterVsCharacterCollision->CastCharacter(this, start, inDisplacement, settings, base_offset, collector);
}
if (contact.mBodyB.IsInvalid() && contact.mCharacterIDB.IsInvalid())
return false;
// Store contact
outContact = contact;
TransformedShape ts;
float character_padding = mCharacterPadding;
if (outContact.mCharacterB != nullptr)
{
// Create a transformed shape for the character
RMat44 com = outContact.mCharacterB->GetCenterOfMassTransform();
ts = TransformedShape(com.GetTranslation(), com.GetQuaternion(), outContact.mCharacterB->GetShape(), BodyID(), SubShapeIDCreator());
// We need to take the other character's padding into account as well
character_padding += outContact.mCharacterB->mCharacterPadding;
}
else
{
// Create a transformed shape for the body
ts = mSystem->GetBodyInterface().GetTransformedShape(outContact.mBodyB);
}
// Fetch the face we're colliding with
Shape::SupportingFace face;
ts.GetSupportingFace(outContact.mSubShapeIDB, -outContact.mContactNormal, base_offset, face);
bool corrected = false;
if (face.size() >= 2)
{
// Inflate the colliding face by the character padding
PolygonConvexSupport polygon(face);
AddConvexRadius add_cvx(polygon, character_padding);
// Correct fraction to hit this inflated face instead of the inner shape
corrected = sCorrectFractionForCharacterPadding(mShape, start.GetRotation(), inDisplacement, Vec3::sOne(), add_cvx, outContact.mFraction);
}
if (!corrected)
{
// When there's only a single contact point or when we were unable to correct the fraction,
// we can just move the fraction back so that the character and its padding don't hit the contact point anymore
outContact.mFraction = max(0.0f, outContact.mFraction - character_padding_fraction);
}
// Ensure that we never return a fraction that's bigger than 1 (which could happen due to float precision issues).
outContact.mFraction = min(outContact.mFraction, 1.0f);
return true;
}
void CharacterVirtual::DetermineConstraints(TempContactList &inContacts, float inDeltaTime, ConstraintList &outConstraints) const
{
for (Contact &c : inContacts)
{
Vec3 contact_velocity = c.mLinearVelocity;
// Penetrating contact: Add a contact velocity that pushes the character out at the desired speed
if (c.mDistance < 0.0f)
contact_velocity -= c.mContactNormal * c.mDistance * mPenetrationRecoverySpeed / inDeltaTime;
// Convert to a constraint
outConstraints.emplace_back();
Constraint &constraint = outConstraints.back();
constraint.mContact = &c;
constraint.mLinearVelocity = contact_velocity;
constraint.mPlane = Plane(c.mContactNormal, c.mDistance);
// Next check if the angle is too steep and if it is add an additional constraint that holds the character back
if (IsSlopeTooSteep(c.mSurfaceNormal))
{
// Only take planes that point up.
// Note that we use the contact normal to allow for better sliding as the surface normal may be in the opposite direction of movement.
float dot = c.mContactNormal.Dot(mUp);
if (dot > 1.0e-3f) // Add a little slack, if the normal is perfectly horizontal we already have our vertical plane.
{
// Mark the slope constraint as steep
constraint.mIsSteepSlope = true;
// Make horizontal normal
Vec3 normal = (c.mContactNormal - dot * mUp).Normalized();
// Create a secondary constraint that blocks horizontal movement
outConstraints.emplace_back();
Constraint &vertical_constraint = outConstraints.back();
vertical_constraint.mContact = &c;
vertical_constraint.mLinearVelocity = contact_velocity.Dot(normal) * normal; // Project the contact velocity on the new normal so that both planes push at an equal rate
vertical_constraint.mPlane = Plane(normal, c.mDistance / normal.Dot(c.mContactNormal)); // Calculate the distance we have to travel horizontally to hit the contact plane
}
}
}
}
bool CharacterVirtual::HandleContact(Vec3Arg inVelocity, Constraint &ioConstraint, float inDeltaTime)
{
Contact &contact = *ioConstraint.mContact;
// Validate the contact point
if (!ValidateContact(contact))
return false;
// We collided
contact.mHadCollision = true;
// Send contact added event
CharacterContactSettings settings;
ContactAdded(contact, settings);
contact.mCanPushCharacter = settings.mCanPushCharacter;
// We don't have any further interaction with sensors beyond an OnContactAdded notification
if (contact.mIsSensorB)
return false;
// If body B cannot receive an impulse, we're done
if (!settings.mCanReceiveImpulses || contact.mMotionTypeB != EMotionType::Dynamic)
return true;
// Lock the body we're colliding with
BodyLockWrite lock(mSystem->GetBodyLockInterface(), contact.mBodyB);
if (!lock.SucceededAndIsInBroadPhase())
return false; // Body has been removed, we should not collide with it anymore
const Body &body = lock.GetBody();
// Calculate the velocity that we want to apply at B so that it will start moving at the character's speed at the contact point
constexpr float cDamping = 0.9f;
constexpr float cPenetrationResolution = 0.4f;
Vec3 relative_velocity = inVelocity - contact.mLinearVelocity;
float projected_velocity = relative_velocity.Dot(contact.mContactNormal);
float delta_velocity = -projected_velocity * cDamping - min(contact.mDistance, 0.0f) * cPenetrationResolution / inDeltaTime;
// Don't apply impulses if we're separating
if (delta_velocity < 0.0f)
return true;
// Determine mass properties of the body we're colliding with
const MotionProperties *motion_properties = body.GetMotionProperties();
RVec3 center_of_mass = body.GetCenterOfMassPosition();
Mat44 inverse_inertia = body.GetInverseInertia();
float inverse_mass = motion_properties->GetInverseMass();
// Calculate the inverse of the mass of body B as seen at the contact point in the direction of the contact normal
Vec3 jacobian = Vec3(contact.mPosition - center_of_mass).Cross(contact.mContactNormal);
float inv_effective_mass = inverse_inertia.Multiply3x3(jacobian).Dot(jacobian) + inverse_mass;
// Impulse P = M dv
float impulse = delta_velocity / inv_effective_mass;
// Clamp the impulse according to the character strength, character strength is a force in newtons, P = F dt
float max_impulse = mMaxStrength * inDeltaTime;
impulse = min(impulse, max_impulse);
// Calculate the world space impulse to apply
Vec3 world_impulse = -impulse * contact.mContactNormal;
// Cancel impulse in down direction (we apply gravity later)
float impulse_dot_up = world_impulse.Dot(mUp);
if (impulse_dot_up < 0.0f)
world_impulse -= impulse_dot_up * mUp;
// Now apply the impulse (body is already locked so we use the no-lock interface)
mSystem->GetBodyInterfaceNoLock().AddImpulse(contact.mBodyB, world_impulse, contact.mPosition);
return true;
}
void CharacterVirtual::SolveConstraints(Vec3Arg inVelocity, float inDeltaTime, float inTimeRemaining, ConstraintList &ioConstraints, IgnoredContactList &ioIgnoredContacts, float &outTimeSimulated, Vec3 &outDisplacement, TempAllocator &inAllocator
#ifdef JPH_DEBUG_RENDERER
, bool inDrawConstraints
#endif // JPH_DEBUG_RENDERER
)
{
// If there are no constraints we can immediately move to our target
if (ioConstraints.empty())
{
outDisplacement = inVelocity * inTimeRemaining;
outTimeSimulated = inTimeRemaining;
return;
}
// Create array that holds the constraints in order of time of impact (sort will happen later)
Array<Constraint *, STLTempAllocator<Constraint *>> sorted_constraints(inAllocator);
sorted_constraints.resize(ioConstraints.size());
for (size_t index = 0; index < sorted_constraints.size(); index++)
sorted_constraints[index] = &ioConstraints[index];
// This is the velocity we use for the displacement, if we hit something it will be shortened
Vec3 velocity = inVelocity;
// Keep track of the last velocity that was applied to the character so that we can detect when the velocity reverses
Vec3 last_velocity = inVelocity;
// Start with no displacement
outDisplacement = Vec3::sZero();
outTimeSimulated = 0.0f;
// These are the contacts that we hit previously without moving a significant distance
Array<Constraint *, STLTempAllocator<Constraint *>> previous_contacts(inAllocator);
previous_contacts.resize(mMaxConstraintIterations);
int num_previous_contacts = 0;
// Loop for a max amount of iterations
for (uint iteration = 0; iteration < mMaxConstraintIterations; iteration++)
{
// Calculate time of impact for all constraints
for (Constraint &c : ioConstraints)
{
// Project velocity on plane direction
c.mProjectedVelocity = c.mPlane.GetNormal().Dot(c.mLinearVelocity - velocity);
if (c.mProjectedVelocity < 1.0e-6f)
{
c.mTOI = FLT_MAX;
}
else
{
// Distance to plane
float dist = c.mPlane.SignedDistance(outDisplacement);
if (dist - c.mProjectedVelocity * inTimeRemaining > -1.0e-4f)
{
// Too little penetration, accept the movement
c.mTOI = FLT_MAX;
}
else
{
// Calculate time of impact
c.mTOI = max(0.0f, dist / c.mProjectedVelocity);
}
}
}
// Sort constraints on proximity
QuickSort(sorted_constraints.begin(), sorted_constraints.end(), [](const Constraint *inLHS, const Constraint *inRHS) {
// If both constraints hit at t = 0 then order the one that will push the character furthest first
// Note that because we add velocity to penetrating contacts, this will also resolve contacts that penetrate the most
if (inLHS->mTOI <= 0.0f && inRHS->mTOI <= 0.0f)
return inLHS->mProjectedVelocity > inRHS->mProjectedVelocity;
// Then sort on time of impact
if (inLHS->mTOI != inRHS->mTOI)
return inLHS->mTOI < inRHS->mTOI;
// As a tie breaker sort static first so it has the most influence
return inLHS->mContact->mMotionTypeB > inRHS->mContact->mMotionTypeB;
});
// Find the first valid constraint
Constraint *constraint = nullptr;
for (Constraint *c : sorted_constraints)
{
// Take the first contact and see if we can reach it
if (c->mTOI >= inTimeRemaining)
{
// We can reach our goal!
outDisplacement += velocity * inTimeRemaining;
outTimeSimulated += inTimeRemaining;
return;
}
// Test if this contact was discarded by the contact callback before
if (c->mContact->mWasDiscarded)
continue;
// Handle the contact
if (!c->mContact->mHadCollision
&& !HandleContact(velocity, *c, inDeltaTime))
{
// Constraint should be ignored, remove it from the list
c->mContact->mWasDiscarded = true;
// Mark it as ignored for GetFirstContactForSweep
ioIgnoredContacts.emplace_back(*c->mContact);
continue;
}
// Cancel velocity of constraint if it cannot push the character
if (!c->mContact->mCanPushCharacter)
c->mLinearVelocity = Vec3::sZero();
// We found the first constraint that we want to collide with
constraint = c;
break;
}
if (constraint == nullptr)
{
// All constraints were discarded, we can reach our goal!
outDisplacement += velocity * inTimeRemaining;
outTimeSimulated += inTimeRemaining;
return;
}
// Move to the contact
outDisplacement += velocity * constraint->mTOI;
inTimeRemaining -= constraint->mTOI;
outTimeSimulated += constraint->mTOI;
// If there's not enough time left to be simulated, bail
if (inTimeRemaining < mMinTimeRemaining)
return;
// If we've moved significantly, clear all previous contacts
if (constraint->mTOI > 1.0e-4f)
num_previous_contacts = 0;
// Get the normal of the plane we're hitting
Vec3 plane_normal = constraint->mPlane.GetNormal();
// If we're hitting a steep slope we cancel the velocity towards the slope first so that we don't end up sliding up the slope
// (we may hit the slope before the vertical wall constraint we added which will result in a small movement up causing jitter in the character movement)
if (constraint->mIsSteepSlope)
{
// We're hitting a steep slope, create a vertical plane that blocks any further movement up the slope (note: not normalized)
Vec3 vertical_plane_normal = plane_normal - plane_normal.Dot(mUp) * mUp;
// Get the relative velocity between the character and the constraint
Vec3 relative_velocity = velocity - constraint->mLinearVelocity;
// Remove velocity towards the slope
velocity = velocity - min(0.0f, relative_velocity.Dot(vertical_plane_normal)) * vertical_plane_normal / vertical_plane_normal.LengthSq();
}
// Get the relative velocity between the character and the constraint
Vec3 relative_velocity = velocity - constraint->mLinearVelocity;
// Calculate new velocity if we cancel the relative velocity in the normal direction
Vec3 new_velocity = velocity - relative_velocity.Dot(plane_normal) * plane_normal;
// Find the normal of the previous contact that we will violate the most if we move in this new direction
float highest_penetration = 0.0f;
Constraint *other_constraint = nullptr;
for (Constraint **c = previous_contacts.data(); c < previous_contacts.data() + num_previous_contacts; ++c)
if (*c != constraint)
{
// Calculate how much we will penetrate if we move in this direction
Vec3 other_normal = (*c)->mPlane.GetNormal();
float penetration = ((*c)->mLinearVelocity - new_velocity).Dot(other_normal);
if (penetration > highest_penetration)
{
// We don't want parallel or anti-parallel normals as that will cause our cross product below to become zero. Slack is approx 10 degrees.
float dot = other_normal.Dot(plane_normal);
if (dot < 0.984f && dot > -0.984f)
{
highest_penetration = penetration;
other_constraint = *c;
}
}
}
// Check if we found a 2nd constraint
if (other_constraint != nullptr)
{
// Calculate the sliding direction and project the new velocity onto that sliding direction
Vec3 other_normal = other_constraint->mPlane.GetNormal();
Vec3 slide_dir = plane_normal.Cross(other_normal).Normalized();
Vec3 velocity_in_slide_dir = new_velocity.Dot(slide_dir) * slide_dir;
// Cancel the constraint velocity in the other constraint plane's direction so that we won't try to apply it again and keep ping ponging between planes
constraint->mLinearVelocity -= min(0.0f, constraint->mLinearVelocity.Dot(other_normal)) * other_normal;
// Cancel the other constraints velocity in this constraint plane's direction so that we won't try to apply it again and keep ping ponging between planes
other_constraint->mLinearVelocity -= min(0.0f, other_constraint->mLinearVelocity.Dot(plane_normal)) * plane_normal;
// Calculate the velocity of this constraint perpendicular to the slide direction
Vec3 perpendicular_velocity = constraint->mLinearVelocity - constraint->mLinearVelocity.Dot(slide_dir) * slide_dir;
// Calculate the velocity of the other constraint perpendicular to the slide direction
Vec3 other_perpendicular_velocity = other_constraint->mLinearVelocity - other_constraint->mLinearVelocity.Dot(slide_dir) * slide_dir;
// Add all components together
new_velocity = velocity_in_slide_dir + perpendicular_velocity + other_perpendicular_velocity;
}
// Allow application to modify calculated velocity
if (mListener != nullptr)
{
if (constraint->mContact->mCharacterB != nullptr)
mListener->OnCharacterContactSolve(this, constraint->mContact->mCharacterB, constraint->mContact->mSubShapeIDB, constraint->mContact->mPosition, constraint->mContact->mContactNormal, constraint->mContact->mLinearVelocity, constraint->mContact->mMaterial, velocity, new_velocity);
else
mListener->OnContactSolve(this, constraint->mContact->mBodyB, constraint->mContact->mSubShapeIDB, constraint->mContact->mPosition, constraint->mContact->mContactNormal, constraint->mContact->mLinearVelocity, constraint->mContact->mMaterial, velocity, new_velocity);
}
#ifdef JPH_DEBUG_RENDERER
if (inDrawConstraints)
{
// Calculate where to draw
RVec3 offset = mPosition + Vec3(0, 0, 2.5f * (iteration + 1));
// Draw constraint plane
DebugRenderer::sInstance->DrawPlane(offset, constraint->mPlane.GetNormal(), Color::sCyan, 1.0f);
// Draw 2nd constraint plane
if (other_constraint != nullptr)
DebugRenderer::sInstance->DrawPlane(offset, other_constraint->mPlane.GetNormal(), Color::sBlue, 1.0f);
// Draw starting velocity
DebugRenderer::sInstance->DrawArrow(offset, offset + velocity, Color::sGreen, 0.05f);
// Draw resulting velocity
DebugRenderer::sInstance->DrawArrow(offset, offset + new_velocity, Color::sRed, 0.05f);
}
#endif // JPH_DEBUG_RENDERER
// Update the velocity
velocity = new_velocity;
// Add the contact to the list so that next iteration we can avoid violating it again
previous_contacts[num_previous_contacts] = constraint;
num_previous_contacts++;
// Check early out
if (constraint->mProjectedVelocity < 1.0e-8f // Constraint should not be pushing, otherwise there may be other constraints that are pushing us
&& velocity.LengthSq() < 1.0e-8f) // There's not enough velocity left
return;
// If the constraint has velocity we accept the new velocity, otherwise check that we didn't reverse velocity
if (!constraint->mLinearVelocity.IsNearZero(1.0e-8f))
last_velocity = constraint->mLinearVelocity;
else if (velocity.Dot(last_velocity) < 0.0f)
return;
}
}
void CharacterVirtual::UpdateSupportingContact(bool inSkipContactVelocityCheck, TempAllocator &inAllocator)
{
// Flag contacts as having a collision if they're close enough but ignore contacts we're moving away from.
// Note that if we did MoveShape before we want to preserve any contacts that it marked as colliding
for (Contact &c : mActiveContacts)
if (!c.mWasDiscarded
&& !c.mHadCollision
&& c.mDistance < mCollisionTolerance
&& (inSkipContactVelocityCheck || c.mSurfaceNormal.Dot(mLinearVelocity - c.mLinearVelocity) <= 1.0e-4f))
{
if (ValidateContact(c))
{
CharacterContactSettings dummy;
ContactAdded(c, dummy);
c.mHadCollision = true;
}
else
c.mWasDiscarded = true;
}
// Calculate transform that takes us to character local space
RMat44 inv_transform = RMat44::sInverseRotationTranslation(mRotation, mPosition);
// Determine if we're supported or not
int num_supported = 0;
int num_sliding = 0;
int num_avg_normal = 0;
Vec3 avg_normal = Vec3::sZero();
Vec3 avg_velocity = Vec3::sZero();
const Contact *supporting_contact = nullptr;
float max_cos_angle = -FLT_MAX;
const Contact *deepest_contact = nullptr;
float smallest_distance = FLT_MAX;
for (const Contact &c : mActiveContacts)
if (c.mHadCollision && !c.mWasDiscarded)
{
// Calculate the angle between the plane normal and the up direction
float cos_angle = c.mSurfaceNormal.Dot(mUp);
// Find the deepest contact
if (c.mDistance < smallest_distance)
{
deepest_contact = &c;
smallest_distance = c.mDistance;
}
// If this contact is in front of our plane, we cannot be supported by it
if (mSupportingVolume.SignedDistance(Vec3(inv_transform * c.mPosition)) > 0.0f)
continue;
// Find the contact with the normal that is pointing most upwards and store it
if (max_cos_angle < cos_angle)
{
supporting_contact = &c;
max_cos_angle = cos_angle;
}
// Check if this is a sliding or supported contact
bool is_supported = mCosMaxSlopeAngle > cNoMaxSlopeAngle || cos_angle >= mCosMaxSlopeAngle;
if (is_supported)
num_supported++;
else
num_sliding++;
// If the angle between the two is less than 85 degrees we also use it to calculate the average normal
if (cos_angle >= 0.08f)
{
avg_normal += c.mSurfaceNormal;
num_avg_normal++;
// For static or dynamic objects or for contacts that don't support us just take the contact velocity
if (c.mMotionTypeB != EMotionType::Kinematic || !is_supported)
avg_velocity += c.mLinearVelocity;
else
{
// For keyframed objects that support us calculate the velocity at our position rather than at the contact position so that we properly follow the object
BodyLockRead lock(mSystem->GetBodyLockInterface(), c.mBodyB);
if (lock.SucceededAndIsInBroadPhase())
{
const Body &body = lock.GetBody();
// Get adjusted body velocity
Vec3 linear_velocity, angular_velocity;
GetAdjustedBodyVelocity(body, linear_velocity, angular_velocity);
// Calculate the ground velocity
avg_velocity += CalculateCharacterGroundVelocity(body.GetCenterOfMassPosition(), linear_velocity, angular_velocity, mLastDeltaTime);
}
else
{
// Fall back to contact velocity
avg_velocity += c.mLinearVelocity;
}
}
}
}
// Take either the most supporting contact or the deepest contact
const Contact *best_contact = supporting_contact != nullptr? supporting_contact : deepest_contact;
// Calculate average normal and velocity
if (num_avg_normal >= 1)
{
mGroundNormal = avg_normal.Normalized();
mGroundVelocity = avg_velocity / float(num_avg_normal);
}
else if (best_contact != nullptr)
{
mGroundNormal = best_contact->mSurfaceNormal;
mGroundVelocity = best_contact->mLinearVelocity;
}
else
{
mGroundNormal = Vec3::sZero();
mGroundVelocity = Vec3::sZero();
}
// Copy contact properties
if (best_contact != nullptr)
{
mGroundBodyID = best_contact->mBodyB;
mGroundBodySubShapeID = best_contact->mSubShapeIDB;
mGroundPosition = best_contact->mPosition;
mGroundMaterial = best_contact->mMaterial;
mGroundUserData = best_contact->mUserData;
}
else
{
mGroundBodyID = BodyID();
mGroundBodySubShapeID = SubShapeID();
mGroundPosition = RVec3::sZero();
mGroundMaterial = PhysicsMaterial::sDefault;
mGroundUserData = 0;
}
// Determine ground state
if (num_supported > 0)
{
// We made contact with something that supports us
mGroundState = EGroundState::OnGround;
}
else if (num_sliding > 0)
{
if ((mLinearVelocity - deepest_contact->mLinearVelocity).Dot(mUp) > 1.0e-4f)
{
// We cannot be on ground if we're moving upwards relative to the ground
mGroundState = EGroundState::OnSteepGround;
}
else
{
// If we're sliding down, we may actually be standing on multiple sliding contacts in such a way that we can't slide off, in this case we're also supported
// Convert the contacts into constraints
TempContactList contacts(mActiveContacts.begin(), mActiveContacts.end(), inAllocator);
ConstraintList constraints(inAllocator);
constraints.reserve(contacts.size() * 2);
DetermineConstraints(contacts, mLastDeltaTime, constraints);
// Solve the displacement using these constraints, this is used to check if we didn't move at all because we are supported
Vec3 displacement;
float time_simulated;
IgnoredContactList ignored_contacts(inAllocator);
ignored_contacts.reserve(contacts.size());
SolveConstraints(-mUp, 1.0f, 1.0f, constraints, ignored_contacts, time_simulated, displacement, inAllocator);
// If we're blocked then we're supported, otherwise we're sliding
float min_required_displacement_sq = Square(0.6f * mLastDeltaTime);
if (time_simulated < 0.001f || displacement.LengthSq() < min_required_displacement_sq)
mGroundState = EGroundState::OnGround;
else
mGroundState = EGroundState::OnSteepGround;
}
}
else
{
// Not supported by anything
mGroundState = best_contact != nullptr? EGroundState::NotSupported : EGroundState::InAir;
}
}
void CharacterVirtual::StoreActiveContacts(const TempContactList &inContacts, TempAllocator &inAllocator)
{
StartTrackingContactChanges();
mActiveContacts.assign(inContacts.begin(), inContacts.end());
UpdateSupportingContact(true, inAllocator);
FinishTrackingContactChanges();
}
void CharacterVirtual::MoveShape(RVec3 &ioPosition, Vec3Arg inVelocity, float inDeltaTime, ContactList *outActiveContacts, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator
#ifdef JPH_DEBUG_RENDERER
, bool inDrawConstraints
#endif // JPH_DEBUG_RENDERER
)
{
JPH_DET_LOG("CharacterVirtual::MoveShape: pos: " << ioPosition << " vel: " << inVelocity << " dt: " << inDeltaTime);
Vec3 movement_direction = inVelocity.NormalizedOr(Vec3::sZero());
float time_remaining = inDeltaTime;
for (uint iteration = 0; iteration < mMaxCollisionIterations && time_remaining >= mMinTimeRemaining; iteration++)
{
JPH_DET_LOG("iter: " << iteration << " time: " << time_remaining);
// Determine contacts in the neighborhood
TempContactList contacts(inAllocator);
contacts.reserve(mMaxNumHits);
GetContactsAtPosition(ioPosition, movement_direction, mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter);
#ifdef JPH_ENABLE_DETERMINISM_LOG
for (const Contact &c : contacts)
JPH_DET_LOG("contact: " << c.mPosition << " vel: " << c.mLinearVelocity << " cnormal: " << c.mContactNormal << " snormal: " << c.mSurfaceNormal << " dist: " << c.mDistance << " fraction: " << c.mFraction << " body: " << c.mBodyB << " subshape: " << c.mSubShapeIDB);
#endif // JPH_ENABLE_DETERMINISM_LOG
// Remove contacts with the same body that have conflicting normals
IgnoredContactList ignored_contacts(inAllocator);
ignored_contacts.reserve(contacts.size());
RemoveConflictingContacts(contacts, ignored_contacts);
// Convert contacts into constraints
ConstraintList constraints(inAllocator);
constraints.reserve(contacts.size() * 2);
DetermineConstraints(contacts, inDeltaTime, constraints);
#ifdef JPH_DEBUG_RENDERER
bool draw_constraints = inDrawConstraints && iteration == 0;
if (draw_constraints)
{
for (const Constraint &c : constraints)
{
// Draw contact point
DebugRenderer::sInstance->DrawMarker(c.mContact->mPosition, Color::sYellow, 0.05f);
Vec3 dist_to_plane = -c.mPlane.GetConstant() * c.mPlane.GetNormal();
// Draw arrow towards surface that we're hitting
DebugRenderer::sInstance->DrawArrow(c.mContact->mPosition, c.mContact->mPosition - dist_to_plane, Color::sYellow, 0.05f);
// Draw plane around the player position indicating the space that we can move
DebugRenderer::sInstance->DrawPlane(mPosition + dist_to_plane, c.mPlane.GetNormal(), Color::sCyan, 1.0f);
DebugRenderer::sInstance->DrawArrow(mPosition + dist_to_plane, mPosition + dist_to_plane + c.mContact->mSurfaceNormal, Color::sRed, 0.05f);
}
}
#endif // JPH_DEBUG_RENDERER
// Solve the displacement using these constraints
Vec3 displacement;
float time_simulated;
SolveConstraints(inVelocity, inDeltaTime, time_remaining, constraints, ignored_contacts, time_simulated, displacement, inAllocator
#ifdef JPH_DEBUG_RENDERER
, draw_constraints
#endif // JPH_DEBUG_RENDERER
);
// Store the contacts now that the colliding ones have been marked
if (outActiveContacts != nullptr)
outActiveContacts->assign(contacts.begin(), contacts.end());
// Do a sweep to test if the path is really unobstructed
Contact cast_contact;
if (GetFirstContactForSweep(ioPosition, displacement, cast_contact, ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter))
{
displacement *= cast_contact.mFraction;
time_simulated *= cast_contact.mFraction;
}
// Update the position
ioPosition += displacement;
time_remaining -= time_simulated;
// If the displacement during this iteration was too small we assume we cannot further progress this update
if (displacement.LengthSq() < 1.0e-8f)
break;
}
}
void CharacterVirtual::SetUserData(uint64 inUserData)
{
mUserData = inUserData;
if (!mInnerBodyID.IsInvalid())
mSystem->GetBodyInterface().SetUserData(mInnerBodyID, inUserData);
}
Vec3 CharacterVirtual::CancelVelocityTowardsSteepSlopes(Vec3Arg inDesiredVelocity) const
{
// If we're not pushing against a steep slope, return the desired velocity
// Note: This is important as WalkStairs overrides the ground state to OnGround when its first check fails but the second succeeds
if (mGroundState == CharacterVirtual::EGroundState::OnGround
|| mGroundState == CharacterVirtual::EGroundState::InAir)
return inDesiredVelocity;
Vec3 desired_velocity = inDesiredVelocity;
for (const Contact &c : mActiveContacts)
if (c.mHadCollision
&& !c.mWasDiscarded
&& IsSlopeTooSteep(c.mSurfaceNormal))
{
// Note that we use the contact normal to allow for better sliding as the surface normal may be in the opposite direction of movement.
Vec3 normal = c.mContactNormal;
// Remove normal vertical component
normal -= normal.Dot(mUp) * mUp;
// Cancel horizontal movement in opposite direction
float dot = normal.Dot(desired_velocity);
if (dot < 0.0f)
desired_velocity -= (dot * normal) / normal.LengthSq();
}
return desired_velocity;
}
void CharacterVirtual::StartTrackingContactChanges()
{
// Check if we're starting for the first time
if (++mTrackingContactChanges > 1)
return;
// No need to track anything if we don't have a listener
JPH_ASSERT(mListenerContacts.empty());
if (mListener == nullptr)
return;
// Mark all current contacts as not seen
mListenerContacts.reserve(ListenerContacts::size_type(mActiveContacts.size()));
for (const Contact &c : mActiveContacts)
if (c.mHadCollision)
mListenerContacts.insert(ListenerContacts::value_type(c, ListenerContactValue()));
}
void CharacterVirtual::FinishTrackingContactChanges()
{
// Check if we have to do anything
int count = --mTrackingContactChanges;
JPH_ASSERT(count >= 0, "Called FinishTrackingContactChanges more times than StartTrackingContactChanges");
if (count > 0)
return;
// No need to track anything if we don't have a listener
if (mListener == nullptr)
return;
// Since we can do multiple operations (e.g. Update followed by WalkStairs)
// we can end up with contacts that were marked as active to the listener but that are
// no longer in the active contact list. We go over all contacts and mark them again
// to ensure that these lists are in sync.
for (ListenerContacts::value_type &c : mListenerContacts)
c.second.mCount = 0;
for (const Contact &c : mActiveContacts)
if (c.mHadCollision)
{
ListenerContacts::iterator it = mListenerContacts.find(c);
JPH_ASSERT(it != mListenerContacts.end());
it->second.mCount = 1;
}
// Call contact removal callbacks
for (ListenerContacts::iterator it = mListenerContacts.begin(); it != mListenerContacts.end(); ++it)
if (it->second.mCount == 0)
{
const ContactKey &c = it->first;
if (!c.mCharacterIDB.IsInvalid())
mListener->OnCharacterContactRemoved(this, c.mCharacterIDB, c.mSubShapeIDB);
else
mListener->OnContactRemoved(this, c.mBodyB, c.mSubShapeIDB);
}
mListenerContacts.ClearAndKeepMemory();
}
void CharacterVirtual::Update(float inDeltaTime, Vec3Arg inGravity, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
// If there's no delta time, we don't need to do anything
if (inDeltaTime <= 0.0f)
return;
StartTrackingContactChanges();
JPH_SCOPE_EXIT([this]() { FinishTrackingContactChanges(); });
// Remember delta time for checking if we're supported by the ground
mLastDeltaTime = inDeltaTime;
// Slide the shape through the world
MoveShape(mPosition, mLinearVelocity, inDeltaTime, &mActiveContacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator
#ifdef JPH_DEBUG_RENDERER
, sDrawConstraints
#endif // JPH_DEBUG_RENDERER
);
// Determine the object that we're standing on
UpdateSupportingContact(false, inAllocator);
// Ensure that the rigid body ends up at the new position
UpdateInnerBodyTransform();
// If we're on the ground
if (!mGroundBodyID.IsInvalid() && mMass > 0.0f)
{
// Add the impulse to the ground due to gravity: P = F dt = M g dt
float normal_dot_gravity = mGroundNormal.Dot(inGravity);
if (normal_dot_gravity < 0.0f)
{
Vec3 world_impulse = -(mMass * normal_dot_gravity / inGravity.Length() * inDeltaTime) * inGravity;
mSystem->GetBodyInterface().AddImpulse(mGroundBodyID, world_impulse, mGroundPosition);
}
}
}
void CharacterVirtual::RefreshContacts(const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
// Determine the contacts
TempContactList contacts(inAllocator);
contacts.reserve(mMaxNumHits);
GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter);
StoreActiveContacts(contacts, inAllocator);
}
void CharacterVirtual::UpdateGroundVelocity()
{
BodyLockRead lock(mSystem->GetBodyLockInterface(), mGroundBodyID);
if (lock.SucceededAndIsInBroadPhase())
{
const Body &body = lock.GetBody();
// Get adjusted body velocity
Vec3 linear_velocity, angular_velocity;
GetAdjustedBodyVelocity(body, linear_velocity, angular_velocity);
// Calculate the ground velocity
mGroundVelocity = CalculateCharacterGroundVelocity(body.GetCenterOfMassPosition(), linear_velocity, angular_velocity, mLastDeltaTime);
}
}
void CharacterVirtual::MoveToContact(RVec3Arg inPosition, const Contact &inContact, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
// Set the new position
SetPosition(inPosition);
// Trigger contact added callback
CharacterContactSettings dummy;
ContactAdded(inContact, dummy);
// Determine the contacts
TempContactList contacts(inAllocator);
contacts.reserve(mMaxNumHits + 1); // +1 because we can add one extra below
GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), mShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter);
// Ensure that we mark inContact as colliding
bool found_contact = false;
for (Contact &c : contacts)
if (c.mBodyB == inContact.mBodyB
&& c.mSubShapeIDB == inContact.mSubShapeIDB)
{
c.mHadCollision = true;
found_contact = true;
}
if (!found_contact)
{
contacts.push_back(inContact);
Contact &copy = contacts.back();
copy.mHadCollision = true;
}
StoreActiveContacts(contacts, inAllocator);
JPH_ASSERT(mGroundState != EGroundState::InAir);
// Ensure that the rigid body ends up at the new position
UpdateInnerBodyTransform();
}
bool CharacterVirtual::SetShape(const Shape *inShape, float inMaxPenetrationDepth, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
if (mShape == nullptr || mSystem == nullptr)
{
// It hasn't been initialized yet
mShape = inShape;
return true;
}
if (inShape != mShape && inShape != nullptr)
{
if (inMaxPenetrationDepth < FLT_MAX)
{
// Check collision around the new shape
TempContactList contacts(inAllocator);
contacts.reserve(mMaxNumHits);
GetContactsAtPosition(mPosition, mLinearVelocity.NormalizedOr(Vec3::sZero()), inShape, contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter);
// Test if this results in penetration, if so cancel the transition
for (const Contact &c : contacts)
if (c.mDistance < -inMaxPenetrationDepth
&& !c.mIsSensorB)
return false;
StoreActiveContacts(contacts, inAllocator);
}
// Set new shape
mShape = inShape;
}
return mShape == inShape;
}
void CharacterVirtual::SetInnerBodyShape(const Shape *inShape)
{
mSystem->GetBodyInterface().SetShape(mInnerBodyID, inShape, false, EActivation::DontActivate);
}
bool CharacterVirtual::CanWalkStairs(Vec3Arg inLinearVelocity) const
{
// We can only walk stairs if we're supported
if (!IsSupported())
return false;
// Check if there's enough horizontal velocity to trigger a stair walk
Vec3 horizontal_velocity = inLinearVelocity - inLinearVelocity.Dot(mUp) * mUp;
if (horizontal_velocity.IsNearZero(1.0e-6f))
return false;
// Check contacts for steep slopes
for (const Contact &c : mActiveContacts)
if (c.mHadCollision
&& !c.mWasDiscarded
&& c.mSurfaceNormal.Dot(horizontal_velocity - c.mLinearVelocity) < 0.0f // Pushing into the contact
&& IsSlopeTooSteep(c.mSurfaceNormal)) // Slope too steep
return true;
return false;
}
bool CharacterVirtual::WalkStairs(float inDeltaTime, Vec3Arg inStepUp, Vec3Arg inStepForward, Vec3Arg inStepForwardTest, Vec3Arg inStepDownExtra, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
StartTrackingContactChanges();
JPH_SCOPE_EXIT([this]() { FinishTrackingContactChanges(); });
// Move up
Vec3 up = inStepUp;
Contact contact;
IgnoredContactList dummy_ignored_contacts(inAllocator);
if (GetFirstContactForSweep(mPosition, up, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter))
{
if (contact.mFraction < 1.0e-6f)
return false; // No movement, cancel
// Limit up movement to the first contact point
up *= contact.mFraction;
}
RVec3 up_position = mPosition + up;
#ifdef JPH_DEBUG_RENDERER
// Draw sweep up
if (sDrawWalkStairs)
DebugRenderer::sInstance->DrawArrow(mPosition, up_position, Color::sWhite, 0.01f);
#endif // JPH_DEBUG_RENDERER
// Collect normals of steep slopes that we would like to walk stairs on.
// We need to do this before calling MoveShape because it will update mActiveContacts.
Vec3 character_velocity = inStepForward / inDeltaTime;
Vec3 horizontal_velocity = character_velocity - character_velocity.Dot(mUp) * mUp;
Array<Vec3, STLTempAllocator<Vec3>> steep_slope_normals(inAllocator);
steep_slope_normals.reserve(mActiveContacts.size());
for (const Contact &c : mActiveContacts)
if (c.mHadCollision
&& !c.mWasDiscarded
&& c.mSurfaceNormal.Dot(horizontal_velocity - c.mLinearVelocity) < 0.0f // Pushing into the contact
&& IsSlopeTooSteep(c.mSurfaceNormal)) // Slope too steep
steep_slope_normals.push_back(c.mSurfaceNormal);
if (steep_slope_normals.empty())
return false; // No steep slopes, cancel
// Horizontal movement
RVec3 new_position = up_position;
MoveShape(new_position, character_velocity, inDeltaTime, nullptr, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
Vec3 horizontal_movement = Vec3(new_position - up_position);
float horizontal_movement_sq = horizontal_movement.LengthSq();
if (horizontal_movement_sq < 1.0e-8f)
return false; // No movement, cancel
// Check if we made any progress towards any of the steep slopes, if not we just slid along the slope
// so we need to cancel the stair walk or else we will move faster than we should as we've done
// normal movement first and then stair walk.
bool made_progress = false;
float max_dot = -0.05f * inStepForward.Length();
for (const Vec3 &normal : steep_slope_normals)
if (normal.Dot(horizontal_movement) < max_dot)
{
// We moved more than 5% of the forward step against a steep slope, accept this as progress
made_progress = true;
break;
}
if (!made_progress)
return false;
#ifdef JPH_DEBUG_RENDERER
// Draw horizontal sweep
if (sDrawWalkStairs)
DebugRenderer::sInstance->DrawArrow(up_position, new_position, Color::sWhite, 0.01f);
#endif // JPH_DEBUG_RENDERER
// Move down towards the floor.
// Note that we travel the same amount down as we traveled up with the specified extra
Vec3 down = -up + inStepDownExtra;
if (!GetFirstContactForSweep(new_position, down, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter))
return false; // No floor found, we're in mid air, cancel stair walk
#ifdef JPH_DEBUG_RENDERER
// Draw sweep down
if (sDrawWalkStairs)
{
RVec3 debug_pos = new_position + contact.mFraction * down;
DebugRenderer::sInstance->DrawArrow(new_position, debug_pos, Color::sWhite, 0.01f);
DebugRenderer::sInstance->DrawArrow(contact.mPosition, contact.mPosition + contact.mSurfaceNormal, Color::sWhite, 0.01f);
mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(debug_pos, mRotation, mShape), Vec3::sOne(), Color::sWhite, false, true);
}
#endif // JPH_DEBUG_RENDERER
// Test for floor that will support the character
if (IsSlopeTooSteep(contact.mSurfaceNormal))
{
// If no test position was provided, we cancel the stair walk
if (inStepForwardTest.IsNearZero())
return false;
// Delta time may be very small, so it may be that we hit the edge of a step and the normal is too horizontal.
// In order to judge if the floor is flat further along the sweep, we test again for a floor at inStepForwardTest
// and check if the normal is valid there.
RVec3 test_position = up_position;
MoveShape(test_position, inStepForwardTest / inDeltaTime, inDeltaTime, nullptr, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
float test_horizontal_movement_sq = Vec3(test_position - up_position).LengthSq();
if (test_horizontal_movement_sq <= horizontal_movement_sq + 1.0e-8f)
return false; // We didn't move any further than in the previous test
#ifdef JPH_DEBUG_RENDERER
// Draw 2nd sweep horizontal
if (sDrawWalkStairs)
DebugRenderer::sInstance->DrawArrow(up_position, test_position, Color::sCyan, 0.01f);
#endif // JPH_DEBUG_RENDERER
// Then sweep down
Contact test_contact;
if (!GetFirstContactForSweep(test_position, down, test_contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter))
return false;
#ifdef JPH_DEBUG_RENDERER
// Draw 2nd sweep down
if (sDrawWalkStairs)
{
RVec3 debug_pos = test_position + test_contact.mFraction * down;
DebugRenderer::sInstance->DrawArrow(test_position, debug_pos, Color::sCyan, 0.01f);
DebugRenderer::sInstance->DrawArrow(test_contact.mPosition, test_contact.mPosition + test_contact.mSurfaceNormal, Color::sCyan, 0.01f);
mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(debug_pos, mRotation, mShape), Vec3::sOne(), Color::sCyan, false, true);
}
#endif // JPH_DEBUG_RENDERER
if (IsSlopeTooSteep(test_contact.mSurfaceNormal))
return false;
}
// Calculate new down position
down *= contact.mFraction;
new_position += down;
// Move the character to the new location
MoveToContact(new_position, contact, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
// Override ground state to 'on ground', it is possible that the contact normal is too steep, but in this case the inStepForwardTest has found a contact normal that is not too steep
mGroundState = EGroundState::OnGround;
return true;
}
bool CharacterVirtual::StickToFloor(Vec3Arg inStepDown, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
StartTrackingContactChanges();
JPH_SCOPE_EXIT([this]() { FinishTrackingContactChanges(); });
// Try to find the floor
Contact contact;
IgnoredContactList dummy_ignored_contacts(inAllocator);
if (!GetFirstContactForSweep(mPosition, inStepDown, contact, dummy_ignored_contacts, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter))
return false; // If no floor found, don't update our position
// Calculate new position
RVec3 new_position = mPosition + contact.mFraction * inStepDown;
#ifdef JPH_DEBUG_RENDERER
// Draw sweep down
if (sDrawStickToFloor)
{
DebugRenderer::sInstance->DrawArrow(mPosition, new_position, Color::sOrange, 0.01f);
mShape->Draw(DebugRenderer::sInstance, GetCenterOfMassTransform(new_position, mRotation, mShape), Vec3::sOne(), Color::sOrange, false, true);
}
#endif // JPH_DEBUG_RENDERER
// Move the character to the new location
MoveToContact(new_position, contact, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
return true;
}
void CharacterVirtual::ExtendedUpdate(float inDeltaTime, Vec3Arg inGravity, const ExtendedUpdateSettings &inSettings, const BroadPhaseLayerFilter &inBroadPhaseLayerFilter, const ObjectLayerFilter &inObjectLayerFilter, const BodyFilter &inBodyFilter, const ShapeFilter &inShapeFilter, TempAllocator &inAllocator)
{
StartTrackingContactChanges();
JPH_SCOPE_EXIT([this]() { FinishTrackingContactChanges(); });
// Update the velocity
Vec3 desired_velocity = mLinearVelocity;
mLinearVelocity = CancelVelocityTowardsSteepSlopes(desired_velocity);
// Remember old position
RVec3 old_position = mPosition;
// Track if on ground before the update
bool ground_to_air = IsSupported();
// Update the character position (instant, do not have to wait for physics update)
Update(inDeltaTime, inGravity, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
// ... and that we got into air after
if (IsSupported())
ground_to_air = false;
// If stick to floor enabled and we're going from supported to not supported
if (ground_to_air && !inSettings.mStickToFloorStepDown.IsNearZero())
{
// If we're not moving up, stick to the floor
float velocity = Vec3(mPosition - old_position).Dot(mUp) / inDeltaTime;
if (velocity <= 1.0e-6f)
StickToFloor(inSettings.mStickToFloorStepDown, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
}
// If walk stairs enabled
if (!inSettings.mWalkStairsStepUp.IsNearZero())
{
// Calculate how much we wanted to move horizontally
Vec3 desired_horizontal_step = desired_velocity * inDeltaTime;
desired_horizontal_step -= desired_horizontal_step.Dot(mUp) * mUp;
float desired_horizontal_step_len = desired_horizontal_step.Length();
if (desired_horizontal_step_len > 0.0f)
{
// Calculate how much we moved horizontally
Vec3 achieved_horizontal_step = Vec3(mPosition - old_position);
achieved_horizontal_step -= achieved_horizontal_step.Dot(mUp) * mUp;
// Only count movement in the direction of the desired movement
// (otherwise we find it ok if we're sliding downhill while we're trying to climb uphill)
Vec3 step_forward_normalized = desired_horizontal_step / desired_horizontal_step_len;
achieved_horizontal_step = max(0.0f, achieved_horizontal_step.Dot(step_forward_normalized)) * step_forward_normalized;
float achieved_horizontal_step_len = achieved_horizontal_step.Length();
// If we didn't move as far as we wanted and we're against a slope that's too steep
if (achieved_horizontal_step_len + 1.0e-4f < desired_horizontal_step_len
&& CanWalkStairs(desired_velocity))
{
// Calculate how much we should step forward
// Note that we clamp the step forward to a minimum distance. This is done because at very high frame rates the delta time
// may be very small, causing a very small step forward. If the step becomes small enough, we may not move far enough
// horizontally to actually end up at the top of the step.
Vec3 step_forward = step_forward_normalized * max(inSettings.mWalkStairsMinStepForward, desired_horizontal_step_len - achieved_horizontal_step_len);
// Calculate how far to scan ahead for a floor. This is only used in case the floor normal at step_forward is too steep.
// In that case an additional check will be performed at this distance to check if that normal is not too steep.
// Start with the ground normal in the horizontal plane and normalizing it
Vec3 step_forward_test = -mGroundNormal;
step_forward_test -= step_forward_test.Dot(mUp) * mUp;
step_forward_test = step_forward_test.NormalizedOr(step_forward_normalized);
// If this normalized vector and the character forward vector is bigger than a preset angle, we use the character forward vector instead of the ground normal
// to do our forward test
if (step_forward_test.Dot(step_forward_normalized) < inSettings.mWalkStairsCosAngleForwardContact)
step_forward_test = step_forward_normalized;
// Calculate the correct magnitude for the test vector
step_forward_test *= inSettings.mWalkStairsStepForwardTest;
WalkStairs(inDeltaTime, inSettings.mWalkStairsStepUp, step_forward, step_forward_test, inSettings.mWalkStairsStepDownExtra, inBroadPhaseLayerFilter, inObjectLayerFilter, inBodyFilter, inShapeFilter, inAllocator);
}
}
}
}
void CharacterVirtual::ContactKey::SaveState(StateRecorder &inStream) const
{
inStream.Write(mBodyB);
inStream.Write(mCharacterIDB);
inStream.Write(mSubShapeIDB);
}
void CharacterVirtual::ContactKey::RestoreState(StateRecorder &inStream)
{
inStream.Read(mBodyB);
inStream.Read(mCharacterIDB);
inStream.Read(mSubShapeIDB);
}
void CharacterVirtual::Contact::SaveState(StateRecorder &inStream) const
{
ContactKey::SaveState(inStream);
inStream.Write(mPosition);
inStream.Write(mLinearVelocity);
inStream.Write(mContactNormal);
inStream.Write(mSurfaceNormal);
inStream.Write(mDistance);
inStream.Write(mFraction);
inStream.Write(mMotionTypeB);
inStream.Write(mIsSensorB);
inStream.Write(mHadCollision);
inStream.Write(mWasDiscarded);
inStream.Write(mCanPushCharacter);
// Cannot store pointers to character B, user data and material
}
void CharacterVirtual::Contact::RestoreState(StateRecorder &inStream)
{
ContactKey::RestoreState(inStream);
inStream.Read(mPosition);
inStream.Read(mLinearVelocity);
inStream.Read(mContactNormal);
inStream.Read(mSurfaceNormal);
inStream.Read(mDistance);
inStream.Read(mFraction);
inStream.Read(mMotionTypeB);
inStream.Read(mIsSensorB);
inStream.Read(mHadCollision);
inStream.Read(mWasDiscarded);
inStream.Read(mCanPushCharacter);
mCharacterB = nullptr; // Cannot restore character B
mUserData = 0; // Cannot restore user data
mMaterial = PhysicsMaterial::sDefault; // Cannot restore material
}
void CharacterVirtual::SaveState(StateRecorder &inStream) const
{
CharacterBase::SaveState(inStream);
inStream.Write(mPosition);
inStream.Write(mRotation);
inStream.Write(mLinearVelocity);
inStream.Write(mLastDeltaTime);
inStream.Write(mMaxHitsExceeded);
// Store contacts that had collision, we're using it at the beginning of the step in CancelVelocityTowardsSteepSlopes
uint32 num_contacts = 0;
for (const Contact &c : mActiveContacts)
if (c.mHadCollision)
++num_contacts;
inStream.Write(num_contacts);
for (const Contact &c : mActiveContacts)
if (c.mHadCollision)
c.SaveState(inStream);
}
void CharacterVirtual::RestoreState(StateRecorder &inStream)
{
CharacterBase::RestoreState(inStream);
inStream.Read(mPosition);
inStream.Read(mRotation);
inStream.Read(mLinearVelocity);
inStream.Read(mLastDeltaTime);
inStream.Read(mMaxHitsExceeded);
// When validating remove contacts that don't have collision since we didn't save them
if (inStream.IsValidating())
for (int i = (int)mActiveContacts.size() - 1; i >= 0; --i)
if (!mActiveContacts[i].mHadCollision)
mActiveContacts.erase(mActiveContacts.begin() + i);
uint32 num_contacts = (uint32)mActiveContacts.size();
inStream.Read(num_contacts);
mActiveContacts.resize(num_contacts);
for (Contact &c : mActiveContacts)
c.RestoreState(inStream);
}
JPH_NAMESPACE_END