186 lines
6.6 KiB
C++
186 lines
6.6 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Body/MassProperties.h>
|
|
#include <Jolt/Math/Matrix.h>
|
|
#include <Jolt/Math/Vector.h>
|
|
#include <Jolt/Math/EigenValueSymmetric.h>
|
|
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
|
#include <Jolt/Core/StreamIn.h>
|
|
#include <Jolt/Core/StreamOut.h>
|
|
#include <Jolt/Core/InsertionSort.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(MassProperties)
|
|
{
|
|
JPH_ADD_ATTRIBUTE(MassProperties, mMass)
|
|
JPH_ADD_ATTRIBUTE(MassProperties, mInertia)
|
|
}
|
|
|
|
bool MassProperties::DecomposePrincipalMomentsOfInertia(Mat44 &outRotation, Vec3 &outDiagonal) const
|
|
{
|
|
// Using eigendecomposition to get the principal components of the inertia tensor
|
|
// See: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
|
|
Matrix<3, 3> inertia;
|
|
inertia.CopyPart(mInertia, 0, 0, 3, 3, 0, 0);
|
|
Matrix<3, 3> eigen_vec = Matrix<3, 3>::sIdentity();
|
|
Vector<3> eigen_val;
|
|
if (!EigenValueSymmetric(inertia, eigen_vec, eigen_val))
|
|
return false;
|
|
|
|
// Sort so that the biggest value goes first
|
|
int indices[] = { 0, 1, 2 };
|
|
InsertionSort(indices, indices + 3, [&eigen_val](int inLeft, int inRight) { return eigen_val[inLeft] > eigen_val[inRight]; });
|
|
|
|
// Convert to a regular Mat44 and Vec3
|
|
outRotation = Mat44::sIdentity();
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
outRotation.SetColumn3(i, Vec3(reinterpret_cast<Float3 &>(eigen_vec.GetColumn(indices[i]))));
|
|
outDiagonal.SetComponent(i, eigen_val[indices[i]]);
|
|
}
|
|
|
|
// Make sure that the rotation matrix is a right handed matrix
|
|
if (outRotation.GetAxisX().Cross(outRotation.GetAxisY()).Dot(outRotation.GetAxisZ()) < 0.0f)
|
|
outRotation.SetAxisZ(-outRotation.GetAxisZ());
|
|
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
// Validate that the solution is correct, for each axis we want to make sure that the difference in inertia is
|
|
// smaller than some fraction of the inertia itself in that axis
|
|
Mat44 new_inertia = outRotation * Mat44::sScale(outDiagonal) * outRotation.Inversed();
|
|
for (int i = 0; i < 3; ++i)
|
|
JPH_ASSERT(new_inertia.GetColumn3(i).IsClose(mInertia.GetColumn3(i), mInertia.GetColumn3(i).LengthSq() * 1.0e-10f));
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
void MassProperties::SetMassAndInertiaOfSolidBox(Vec3Arg inBoxSize, float inDensity)
|
|
{
|
|
// Calculate mass
|
|
mMass = inBoxSize.GetX() * inBoxSize.GetY() * inBoxSize.GetZ() * inDensity;
|
|
|
|
// Calculate inertia
|
|
Vec3 size_sq = inBoxSize * inBoxSize;
|
|
Vec3 scale = (size_sq.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_X>() + size_sq.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Y>()) * (mMass / 12.0f);
|
|
mInertia = Mat44::sScale(scale);
|
|
}
|
|
|
|
void MassProperties::ScaleToMass(float inMass)
|
|
{
|
|
if (mMass > 0.0f)
|
|
{
|
|
// Calculate how much we have to scale the inertia tensor
|
|
float mass_scale = inMass / mMass;
|
|
|
|
// Update mass
|
|
mMass = inMass;
|
|
|
|
// Update inertia tensor
|
|
for (int i = 0; i < 3; ++i)
|
|
mInertia.SetColumn4(i, mInertia.GetColumn4(i) * mass_scale);
|
|
}
|
|
else
|
|
{
|
|
// Just set the mass
|
|
mMass = inMass;
|
|
}
|
|
}
|
|
|
|
Vec3 MassProperties::sGetEquivalentSolidBoxSize(float inMass, Vec3Arg inInertiaDiagonal)
|
|
{
|
|
// Moment of inertia of a solid box has diagonal:
|
|
// mass / 12 * [size_y^2 + size_z^2, size_x^2 + size_z^2, size_x^2 + size_y^2]
|
|
// Solving for size_x, size_y and size_y (diagonal and mass are known):
|
|
Vec3 diagonal = inInertiaDiagonal * (12.0f / inMass);
|
|
return Vec3(sqrt(0.5f * (-diagonal[0] + diagonal[1] + diagonal[2])), sqrt(0.5f * (diagonal[0] - diagonal[1] + diagonal[2])), sqrt(0.5f * (diagonal[0] + diagonal[1] - diagonal[2])));
|
|
}
|
|
|
|
void MassProperties::Scale(Vec3Arg inScale)
|
|
{
|
|
// See: https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
|
|
// The diagonal of the inertia tensor can be calculated like this:
|
|
// Ixx = sum_{k = 1 to n}(m_k * (y_k^2 + z_k^2))
|
|
// Iyy = sum_{k = 1 to n}(m_k * (x_k^2 + z_k^2))
|
|
// Izz = sum_{k = 1 to n}(m_k * (x_k^2 + y_k^2))
|
|
//
|
|
// We want to isolate the terms x_k, y_k and z_k:
|
|
// d = [0.5, 0.5, 0.5].[Ixx, Iyy, Izz]
|
|
// [sum_{k = 1 to n}(m_k * x_k^2), sum_{k = 1 to n}(m_k * y_k^2), sum_{k = 1 to n}(m_k * z_k^2)] = [d, d, d] - [Ixx, Iyy, Izz]
|
|
Vec3 diagonal = mInertia.GetDiagonal3();
|
|
Vec3 xyz_sq = Vec3::sReplicate(Vec3::sReplicate(0.5f).Dot(diagonal)) - diagonal;
|
|
|
|
// When scaling a shape these terms change like this:
|
|
// sum_{k = 1 to n}(m_k * (scale_x * x_k)^2) = scale_x^2 * sum_{k = 1 to n}(m_k * x_k^2)
|
|
// Same for y_k and z_k
|
|
// Using these terms we can calculate the new diagonal of the inertia tensor:
|
|
Vec3 xyz_scaled_sq = inScale * inScale * xyz_sq;
|
|
float i_xx = xyz_scaled_sq.GetY() + xyz_scaled_sq.GetZ();
|
|
float i_yy = xyz_scaled_sq.GetX() + xyz_scaled_sq.GetZ();
|
|
float i_zz = xyz_scaled_sq.GetX() + xyz_scaled_sq.GetY();
|
|
|
|
// The off diagonal elements are calculated like:
|
|
// Ixy = -sum_{k = 1 to n}(x_k y_k)
|
|
// Ixz = -sum_{k = 1 to n}(x_k z_k)
|
|
// Iyz = -sum_{k = 1 to n}(y_k z_k)
|
|
// Scaling these is simple:
|
|
float i_xy = inScale.GetX() * inScale.GetY() * mInertia(0, 1);
|
|
float i_xz = inScale.GetX() * inScale.GetZ() * mInertia(0, 2);
|
|
float i_yz = inScale.GetY() * inScale.GetZ() * mInertia(1, 2);
|
|
|
|
// Update inertia tensor
|
|
mInertia(0, 0) = i_xx;
|
|
mInertia(0, 1) = i_xy;
|
|
mInertia(1, 0) = i_xy;
|
|
mInertia(1, 1) = i_yy;
|
|
mInertia(0, 2) = i_xz;
|
|
mInertia(2, 0) = i_xz;
|
|
mInertia(1, 2) = i_yz;
|
|
mInertia(2, 1) = i_yz;
|
|
mInertia(2, 2) = i_zz;
|
|
|
|
// Mass scales linear with volume (note that the scaling can be negative and we don't want the mass to become negative)
|
|
float mass_scale = abs(inScale.GetX() * inScale.GetY() * inScale.GetZ());
|
|
mMass *= mass_scale;
|
|
|
|
// Inertia scales linear with mass. This updates the m_k terms above.
|
|
mInertia *= mass_scale;
|
|
|
|
// Ensure that the bottom right element is a 1 again
|
|
mInertia(3, 3) = 1.0f;
|
|
}
|
|
|
|
void MassProperties::Rotate(Mat44Arg inRotation)
|
|
{
|
|
mInertia = inRotation.Multiply3x3(mInertia).Multiply3x3RightTransposed(inRotation);
|
|
}
|
|
|
|
void MassProperties::Translate(Vec3Arg inTranslation)
|
|
{
|
|
// Transform the inertia using the parallel axis theorem: I' = I + m * (translation^2 E - translation translation^T)
|
|
// Where I is the original body's inertia and E the identity matrix
|
|
// See: https://en.wikipedia.org/wiki/Parallel_axis_theorem
|
|
mInertia += mMass * (Mat44::sScale(inTranslation.Dot(inTranslation)) - Mat44::sOuterProduct(inTranslation, inTranslation));
|
|
|
|
// Ensure that inertia is a 3x3 matrix, adding inertias causes the bottom right element to change
|
|
mInertia.SetColumn4(3, Vec4(0, 0, 0, 1));
|
|
}
|
|
|
|
void MassProperties::SaveBinaryState(StreamOut &inStream) const
|
|
{
|
|
inStream.Write(mMass);
|
|
inStream.Write(mInertia);
|
|
}
|
|
|
|
void MassProperties::RestoreBinaryState(StreamIn &inStream)
|
|
{
|
|
inStream.Read(mMass);
|
|
inStream.Read(mInertia);
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|