godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Body/Body.cpp
2025-04-12 18:40:44 +02:00

424 lines
17 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/Body/BodyCreationSettings.h>
#include <Jolt/Physics/SoftBody/SoftBodyCreationSettings.h>
#include <Jolt/Physics/SoftBody/SoftBodyMotionProperties.h>
#include <Jolt/Physics/PhysicsSettings.h>
#include <Jolt/Physics/StateRecorder.h>
#include <Jolt/Physics/Collision/Shape/EmptyShape.h>
#include <Jolt/Core/StringTools.h>
#include <Jolt/Core/Profiler.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
static const EmptyShape sFixedToWorldShape;
Body Body::sFixedToWorld(false);
Body::Body(bool) :
mPosition(Vec3::sZero()),
mRotation(Quat::sIdentity()),
mShape(&sFixedToWorldShape), // Dummy shape
mFriction(0.0f),
mRestitution(0.0f),
mObjectLayer(cObjectLayerInvalid),
mMotionType(EMotionType::Static)
{
sFixedToWorldShape.SetEmbedded();
}
void Body::SetMotionType(EMotionType inMotionType)
{
if (mMotionType == inMotionType)
return;
JPH_ASSERT(inMotionType == EMotionType::Static || mMotionProperties != nullptr, "Body needs to be created with mAllowDynamicOrKinematic set to true");
JPH_ASSERT(inMotionType != EMotionType::Static || !IsActive(), "Deactivate body first");
JPH_ASSERT(inMotionType == EMotionType::Dynamic || !IsSoftBody(), "Soft bodies can only be dynamic, you can make individual vertices kinematic by setting their inverse mass to 0");
// Store new motion type
mMotionType = inMotionType;
if (mMotionProperties != nullptr)
{
// Update cache
JPH_IF_ENABLE_ASSERTS(mMotionProperties->mCachedMotionType = inMotionType;)
switch (inMotionType)
{
case EMotionType::Static:
// Stop the object
mMotionProperties->mLinearVelocity = Vec3::sZero();
mMotionProperties->mAngularVelocity = Vec3::sZero();
[[fallthrough]];
case EMotionType::Kinematic:
// Cancel forces
mMotionProperties->ResetForce();
mMotionProperties->ResetTorque();
break;
case EMotionType::Dynamic:
break;
}
}
}
void Body::SetAllowSleeping(bool inAllow)
{
mMotionProperties->mAllowSleeping = inAllow;
if (inAllow)
ResetSleepTimer();
}
void Body::MoveKinematic(RVec3Arg inTargetPosition, QuatArg inTargetRotation, float inDeltaTime)
{
JPH_ASSERT(IsRigidBody()); // Only valid for rigid bodies
JPH_ASSERT(!IsStatic());
JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess(), BodyAccess::EAccess::Read));
// Calculate center of mass at end situation
RVec3 new_com = inTargetPosition + inTargetRotation * mShape->GetCenterOfMass();
// Calculate delta position and rotation
Vec3 delta_pos = Vec3(new_com - mPosition);
Quat delta_rotation = inTargetRotation * mRotation.Conjugated();
mMotionProperties->MoveKinematic(delta_pos, delta_rotation, inDeltaTime);
}
void Body::CalculateWorldSpaceBoundsInternal()
{
mBounds = mShape->GetWorldSpaceBounds(GetCenterOfMassTransform(), Vec3::sOne());
}
void Body::SetPositionAndRotationInternal(RVec3Arg inPosition, QuatArg inRotation, bool inResetSleepTimer)
{
JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess(), BodyAccess::EAccess::ReadWrite));
mPosition = inPosition + inRotation * mShape->GetCenterOfMass();
mRotation = inRotation;
// Initialize bounding box
CalculateWorldSpaceBoundsInternal();
// Reset sleeping test
if (inResetSleepTimer && mMotionProperties != nullptr)
ResetSleepTimer();
}
void Body::UpdateCenterOfMassInternal(Vec3Arg inPreviousCenterOfMass, bool inUpdateMassProperties)
{
// Update center of mass position so the world position for this body stays the same
mPosition += mRotation * (mShape->GetCenterOfMass() - inPreviousCenterOfMass);
// Recalculate mass and inertia if requested
if (inUpdateMassProperties && mMotionProperties != nullptr)
mMotionProperties->SetMassProperties(mMotionProperties->GetAllowedDOFs(), mShape->GetMassProperties());
}
void Body::SetShapeInternal(const Shape *inShape, bool inUpdateMassProperties)
{
JPH_ASSERT(IsRigidBody()); // Only valid for rigid bodies
JPH_ASSERT(BodyAccess::sCheckRights(BodyAccess::sPositionAccess(), BodyAccess::EAccess::ReadWrite));
// Get the old center of mass
Vec3 old_com = mShape->GetCenterOfMass();
// Update the shape
mShape = inShape;
// Update center of mass
UpdateCenterOfMassInternal(old_com, inUpdateMassProperties);
// Recalculate bounding box
CalculateWorldSpaceBoundsInternal();
}
ECanSleep Body::UpdateSleepStateInternal(float inDeltaTime, float inMaxMovement, float inTimeBeforeSleep)
{
// Check override & sensors will never go to sleep (they would stop detecting collisions with sleeping bodies)
if (!mMotionProperties->mAllowSleeping || IsSensor())
return ECanSleep::CannotSleep;
// Get the points to test
RVec3 points[3];
GetSleepTestPoints(points);
#ifdef JPH_DOUBLE_PRECISION
// Get base offset for spheres
DVec3 offset = mMotionProperties->GetSleepTestOffset();
#endif // JPH_DOUBLE_PRECISION
for (int i = 0; i < 3; ++i)
{
Sphere &sphere = mMotionProperties->mSleepTestSpheres[i];
// Make point relative to base offset
#ifdef JPH_DOUBLE_PRECISION
Vec3 p = Vec3(points[i] - offset);
#else
Vec3 p = points[i];
#endif // JPH_DOUBLE_PRECISION
// Encapsulate the point in a sphere
sphere.EncapsulatePoint(p);
// Test if it exceeded the max movement
if (sphere.GetRadius() > inMaxMovement)
{
// Body is not sleeping, reset test
mMotionProperties->ResetSleepTestSpheres(points);
return ECanSleep::CannotSleep;
}
}
return mMotionProperties->AccumulateSleepTime(inDeltaTime, inTimeBeforeSleep);
}
void Body::GetSubmergedVolume(RVec3Arg inSurfacePosition, Vec3Arg inSurfaceNormal, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outRelativeCenterOfBuoyancy) const
{
// For GetSubmergedVolume we transform the surface relative to the body position for increased precision
Mat44 rotation = Mat44::sRotation(mRotation);
Plane surface_relative_to_body = Plane::sFromPointAndNormal(inSurfacePosition - mPosition, inSurfaceNormal);
// Calculate amount of volume that is submerged and what the center of buoyancy is
mShape->GetSubmergedVolume(rotation, Vec3::sOne(), surface_relative_to_body, outTotalVolume, outSubmergedVolume, outRelativeCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, mPosition));
}
bool Body::ApplyBuoyancyImpulse(float inTotalVolume, float inSubmergedVolume, Vec3Arg inRelativeCenterOfBuoyancy, float inBuoyancy, float inLinearDrag, float inAngularDrag, Vec3Arg inFluidVelocity, Vec3Arg inGravity, float inDeltaTime)
{
JPH_ASSERT(IsRigidBody()); // Only implemented for rigid bodies currently
// We follow the approach from 'Game Programming Gems 6' 2.5 Exact Buoyancy for Polyhedra
// All quantities below are in world space
// If we're not submerged, there's no point in doing the rest of the calculations
if (inSubmergedVolume > 0.0f)
{
#ifdef JPH_DEBUG_RENDERER
// Draw submerged volume properties
if (Shape::sDrawSubmergedVolumes)
{
RVec3 center_of_buoyancy = mPosition + inRelativeCenterOfBuoyancy;
DebugRenderer::sInstance->DrawMarker(center_of_buoyancy, Color::sWhite, 2.0f);
DebugRenderer::sInstance->DrawText3D(center_of_buoyancy, StringFormat("%.3f / %.3f", (double)inSubmergedVolume, (double)inTotalVolume));
}
#endif // JPH_DEBUG_RENDERER
// When buoyancy is 1 we want neutral buoyancy, this means that the density of the liquid is the same as the density of the body at that point.
// Buoyancy > 1 should make the object float, < 1 should make it sink.
float inverse_mass = mMotionProperties->GetInverseMass();
float fluid_density = inBuoyancy / (inTotalVolume * inverse_mass);
// Buoyancy force = Density of Fluid * Submerged volume * Magnitude of gravity * Up direction (eq 2.5.1)
// Impulse = Force * Delta time
// We should apply this at the center of buoyancy (= center of mass of submerged volume)
Vec3 buoyancy_impulse = -fluid_density * inSubmergedVolume * mMotionProperties->GetGravityFactor() * inGravity * inDeltaTime;
// Calculate the velocity of the center of buoyancy relative to the fluid
Vec3 linear_velocity = mMotionProperties->GetLinearVelocity();
Vec3 angular_velocity = mMotionProperties->GetAngularVelocity();
Vec3 center_of_buoyancy_velocity = linear_velocity + angular_velocity.Cross(inRelativeCenterOfBuoyancy);
Vec3 relative_center_of_buoyancy_velocity = inFluidVelocity - center_of_buoyancy_velocity;
// Here we deviate from the article, instead of eq 2.5.14 we use a quadratic drag formula: https://en.wikipedia.org/wiki/Drag_%28physics%29
// Drag force = 0.5 * Fluid Density * (Velocity of fluid - Velocity of center of buoyancy)^2 * Linear Drag * Area Facing the Relative Fluid Velocity
// Again Impulse = Force * Delta Time
// We should apply this at the center of buoyancy (= center of mass for submerged volume with no center of mass offset)
// Get size of local bounding box
Vec3 size = mShape->GetLocalBounds().GetSize();
// Determine area of the local space bounding box in the direction of the relative velocity between the fluid and the center of buoyancy
float area = 0.0f;
float relative_center_of_buoyancy_velocity_len_sq = relative_center_of_buoyancy_velocity.LengthSq();
if (relative_center_of_buoyancy_velocity_len_sq > 1.0e-12f)
{
Vec3 local_relative_center_of_buoyancy_velocity = GetRotation().Conjugated() * relative_center_of_buoyancy_velocity;
area = local_relative_center_of_buoyancy_velocity.Abs().Dot(size.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() * size.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>()) / sqrt(relative_center_of_buoyancy_velocity_len_sq);
}
// Calculate the impulse
Vec3 drag_impulse = (0.5f * fluid_density * inLinearDrag * area * inDeltaTime) * relative_center_of_buoyancy_velocity * relative_center_of_buoyancy_velocity.Length();
// Clamp magnitude against current linear velocity to prevent overshoot
float linear_velocity_len_sq = linear_velocity.LengthSq();
float drag_delta_linear_velocity_len_sq = (drag_impulse * inverse_mass).LengthSq();
if (drag_delta_linear_velocity_len_sq > linear_velocity_len_sq)
drag_impulse *= sqrt(linear_velocity_len_sq / drag_delta_linear_velocity_len_sq);
// Calculate the resulting delta linear velocity due to buoyancy and drag
Vec3 delta_linear_velocity = (drag_impulse + buoyancy_impulse) * inverse_mass;
mMotionProperties->AddLinearVelocityStep(delta_linear_velocity);
// Determine average width of the body (across the three axis)
float l = (size.GetX() + size.GetY() + size.GetZ()) / 3.0f;
// Drag torque = -Angular Drag * Mass * Submerged volume / Total volume * (Average width of body)^2 * Angular velocity (eq 2.5.15)
Vec3 drag_angular_impulse = (-inAngularDrag * inSubmergedVolume / inTotalVolume * inDeltaTime * Square(l) / inverse_mass) * angular_velocity;
Mat44 inv_inertia = GetInverseInertia();
Vec3 drag_delta_angular_velocity = inv_inertia * drag_angular_impulse;
// Clamp magnitude against the current angular velocity to prevent overshoot
float angular_velocity_len_sq = angular_velocity.LengthSq();
float drag_delta_angular_velocity_len_sq = drag_delta_angular_velocity.LengthSq();
if (drag_delta_angular_velocity_len_sq > angular_velocity_len_sq)
drag_delta_angular_velocity *= sqrt(angular_velocity_len_sq / drag_delta_angular_velocity_len_sq);
// Calculate total delta angular velocity due to drag and buoyancy
Vec3 delta_angular_velocity = drag_delta_angular_velocity + inv_inertia * inRelativeCenterOfBuoyancy.Cross(buoyancy_impulse + drag_impulse);
mMotionProperties->AddAngularVelocityStep(delta_angular_velocity);
return true;
}
return false;
}
bool Body::ApplyBuoyancyImpulse(RVec3Arg inSurfacePosition, Vec3Arg inSurfaceNormal, float inBuoyancy, float inLinearDrag, float inAngularDrag, Vec3Arg inFluidVelocity, Vec3Arg inGravity, float inDeltaTime)
{
JPH_PROFILE_FUNCTION();
float total_volume, submerged_volume;
Vec3 relative_center_of_buoyancy;
GetSubmergedVolume(inSurfacePosition, inSurfaceNormal, total_volume, submerged_volume, relative_center_of_buoyancy);
return ApplyBuoyancyImpulse(total_volume, submerged_volume, relative_center_of_buoyancy, inBuoyancy, inLinearDrag, inAngularDrag, inFluidVelocity, inGravity, inDeltaTime);
}
void Body::SaveState(StateRecorder &inStream) const
{
// Only write properties that can change at runtime
inStream.Write(mPosition);
inStream.Write(mRotation);
if (mMotionProperties != nullptr)
{
if (IsSoftBody())
static_cast<const SoftBodyMotionProperties *>(mMotionProperties)->SaveState(inStream);
else
mMotionProperties->SaveState(inStream);
}
}
void Body::RestoreState(StateRecorder &inStream)
{
inStream.Read(mPosition);
inStream.Read(mRotation);
if (mMotionProperties != nullptr)
{
if (IsSoftBody())
static_cast<SoftBodyMotionProperties *>(mMotionProperties)->RestoreState(inStream);
else
mMotionProperties->RestoreState(inStream);
JPH_IF_ENABLE_ASSERTS(mMotionProperties->mCachedMotionType = mMotionType);
}
// Initialize bounding box
CalculateWorldSpaceBoundsInternal();
}
BodyCreationSettings Body::GetBodyCreationSettings() const
{
JPH_ASSERT(IsRigidBody());
BodyCreationSettings result;
result.mPosition = GetPosition();
result.mRotation = GetRotation();
result.mLinearVelocity = mMotionProperties != nullptr? mMotionProperties->GetLinearVelocity() : Vec3::sZero();
result.mAngularVelocity = mMotionProperties != nullptr? mMotionProperties->GetAngularVelocity() : Vec3::sZero();
result.mObjectLayer = GetObjectLayer();
result.mUserData = mUserData;
result.mCollisionGroup = GetCollisionGroup();
result.mMotionType = GetMotionType();
result.mAllowedDOFs = mMotionProperties != nullptr? mMotionProperties->GetAllowedDOFs() : EAllowedDOFs::All;
result.mAllowDynamicOrKinematic = mMotionProperties != nullptr;
result.mIsSensor = IsSensor();
result.mCollideKinematicVsNonDynamic = GetCollideKinematicVsNonDynamic();
result.mUseManifoldReduction = GetUseManifoldReduction();
result.mApplyGyroscopicForce = GetApplyGyroscopicForce();
result.mMotionQuality = mMotionProperties != nullptr? mMotionProperties->GetMotionQuality() : EMotionQuality::Discrete;
result.mEnhancedInternalEdgeRemoval = GetEnhancedInternalEdgeRemoval();
result.mAllowSleeping = mMotionProperties != nullptr? GetAllowSleeping() : true;
result.mFriction = GetFriction();
result.mRestitution = GetRestitution();
result.mLinearDamping = mMotionProperties != nullptr? mMotionProperties->GetLinearDamping() : 0.0f;
result.mAngularDamping = mMotionProperties != nullptr? mMotionProperties->GetAngularDamping() : 0.0f;
result.mMaxLinearVelocity = mMotionProperties != nullptr? mMotionProperties->GetMaxLinearVelocity() : 0.0f;
result.mMaxAngularVelocity = mMotionProperties != nullptr? mMotionProperties->GetMaxAngularVelocity() : 0.0f;
result.mGravityFactor = mMotionProperties != nullptr? mMotionProperties->GetGravityFactor() : 1.0f;
result.mNumVelocityStepsOverride = mMotionProperties != nullptr? mMotionProperties->GetNumVelocityStepsOverride() : 0;
result.mNumPositionStepsOverride = mMotionProperties != nullptr? mMotionProperties->GetNumPositionStepsOverride() : 0;
result.mOverrideMassProperties = EOverrideMassProperties::MassAndInertiaProvided;
// Invert inertia and mass
if (mMotionProperties != nullptr)
{
float inv_mass = mMotionProperties->GetInverseMassUnchecked();
Mat44 inv_inertia = mMotionProperties->GetLocalSpaceInverseInertiaUnchecked();
// Get mass
result.mMassPropertiesOverride.mMass = inv_mass != 0.0f? 1.0f / inv_mass : FLT_MAX;
// Get inertia
Mat44 inertia;
if (inertia.SetInversed3x3(inv_inertia))
{
// Inertia was invertible, we can use it
result.mMassPropertiesOverride.mInertia = inertia;
}
else
{
// Prevent division by zero
Vec3 diagonal = Vec3::sMax(inv_inertia.GetDiagonal3(), Vec3::sReplicate(FLT_MIN));
result.mMassPropertiesOverride.mInertia = Mat44::sScale(diagonal.Reciprocal());
}
}
else
{
result.mMassPropertiesOverride.mMass = FLT_MAX;
result.mMassPropertiesOverride.mInertia = Mat44::sScale(Vec3::sReplicate(FLT_MAX));
}
result.SetShape(GetShape());
return result;
}
SoftBodyCreationSettings Body::GetSoftBodyCreationSettings() const
{
JPH_ASSERT(IsSoftBody());
SoftBodyCreationSettings result;
result.mPosition = GetPosition();
result.mRotation = GetRotation();
result.mUserData = mUserData;
result.mObjectLayer = GetObjectLayer();
result.mCollisionGroup = GetCollisionGroup();
result.mFriction = GetFriction();
result.mRestitution = GetRestitution();
const SoftBodyMotionProperties *mp = static_cast<const SoftBodyMotionProperties *>(mMotionProperties);
result.mNumIterations = mp->GetNumIterations();
result.mLinearDamping = mp->GetLinearDamping();
result.mMaxLinearVelocity = mp->GetMaxLinearVelocity();
result.mGravityFactor = mp->GetGravityFactor();
result.mPressure = mp->GetPressure();
result.mUpdatePosition = mp->GetUpdatePosition();
result.mSettings = mp->GetSettings();
return result;
}
JPH_NAMESPACE_END