godot-module-template/engine/thirdparty/jolt_physics/Jolt/Math/UVec4.h

221 lines
8.1 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Vec4.h>
JPH_NAMESPACE_BEGIN
class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) UVec4
{
public:
JPH_OVERRIDE_NEW_DELETE
// Underlying vector type
#if defined(JPH_USE_SSE)
using Type = __m128i;
#elif defined(JPH_USE_NEON)
using Type = uint32x4_t;
#else
using Type = struct { uint32 mData[4]; };
#endif
/// Constructor
UVec4() = default; ///< Intentionally not initialized for performance reasons
UVec4(const UVec4 &inRHS) = default;
UVec4 & operator = (const UVec4 &inRHS) = default;
JPH_INLINE UVec4(Type inRHS) : mValue(inRHS) { }
/// Create a vector from 4 integer components
JPH_INLINE UVec4(uint32 inX, uint32 inY, uint32 inZ, uint32 inW);
/// Comparison
JPH_INLINE bool operator == (UVec4Arg inV2) const;
JPH_INLINE bool operator != (UVec4Arg inV2) const { return !(*this == inV2); }
/// Swizzle the elements in inV
template<uint32 SwizzleX, uint32 SwizzleY, uint32 SwizzleZ, uint32 SwizzleW>
JPH_INLINE UVec4 Swizzle() const;
/// Vector with all zeros
static JPH_INLINE UVec4 sZero();
/// Replicate int inV across all components
static JPH_INLINE UVec4 sReplicate(uint32 inV);
/// Load 1 int from memory and place it in the X component, zeros Y, Z and W
static JPH_INLINE UVec4 sLoadInt(const uint32 *inV);
/// Load 4 ints from memory
static JPH_INLINE UVec4 sLoadInt4(const uint32 *inV);
/// Load 4 ints from memory, aligned to 16 bytes
static JPH_INLINE UVec4 sLoadInt4Aligned(const uint32 *inV);
/// Gather 4 ints from memory at inBase + inOffsets[i] * Scale
template <const int Scale>
static JPH_INLINE UVec4 sGatherInt4(const uint32 *inBase, UVec4Arg inOffsets);
/// Return the minimum value of each of the components
static JPH_INLINE UVec4 sMin(UVec4Arg inV1, UVec4Arg inV2);
/// Return the maximum of each of the components
static JPH_INLINE UVec4 sMax(UVec4Arg inV1, UVec4Arg inV2);
/// Equals (component wise)
static JPH_INLINE UVec4 sEquals(UVec4Arg inV1, UVec4Arg inV2);
/// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1
static JPH_INLINE UVec4 sSelect(UVec4Arg inNotSet, UVec4Arg inSet, UVec4Arg inControl);
/// Logical or (component wise)
static JPH_INLINE UVec4 sOr(UVec4Arg inV1, UVec4Arg inV2);
/// Logical xor (component wise)
static JPH_INLINE UVec4 sXor(UVec4Arg inV1, UVec4Arg inV2);
/// Logical and (component wise)
static JPH_INLINE UVec4 sAnd(UVec4Arg inV1, UVec4Arg inV2);
/// Logical not (component wise)
static JPH_INLINE UVec4 sNot(UVec4Arg inV1);
/// Sorts the elements in inIndex so that the values that correspond to trues in inValue are the first elements.
/// The remaining elements will be set to inValue.w.
/// I.e. if inValue = (true, false, true, false) and inIndex = (1, 2, 3, 4) the function returns (1, 3, 4, 4).
static JPH_INLINE UVec4 sSort4True(UVec4Arg inValue, UVec4Arg inIndex);
/// Get individual components
#if defined(JPH_USE_SSE)
JPH_INLINE uint32 GetX() const { return uint32(_mm_cvtsi128_si32(mValue)); }
JPH_INLINE uint32 GetY() const { return mU32[1]; }
JPH_INLINE uint32 GetZ() const { return mU32[2]; }
JPH_INLINE uint32 GetW() const { return mU32[3]; }
#elif defined(JPH_USE_NEON)
JPH_INLINE uint32 GetX() const { return vgetq_lane_u32(mValue, 0); }
JPH_INLINE uint32 GetY() const { return vgetq_lane_u32(mValue, 1); }
JPH_INLINE uint32 GetZ() const { return vgetq_lane_u32(mValue, 2); }
JPH_INLINE uint32 GetW() const { return vgetq_lane_u32(mValue, 3); }
#else
JPH_INLINE uint32 GetX() const { return mU32[0]; }
JPH_INLINE uint32 GetY() const { return mU32[1]; }
JPH_INLINE uint32 GetZ() const { return mU32[2]; }
JPH_INLINE uint32 GetW() const { return mU32[3]; }
#endif
/// Set individual components
JPH_INLINE void SetX(uint32 inX) { mU32[0] = inX; }
JPH_INLINE void SetY(uint32 inY) { mU32[1] = inY; }
JPH_INLINE void SetZ(uint32 inZ) { mU32[2] = inZ; }
JPH_INLINE void SetW(uint32 inW) { mU32[3] = inW; }
/// Get component by index
JPH_INLINE uint32 operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 4); return mU32[inCoordinate]; }
JPH_INLINE uint32 & operator [] (uint inCoordinate) { JPH_ASSERT(inCoordinate < 4); return mU32[inCoordinate]; }
/// Multiplies each of the 4 integer components with an integer (discards any overflow)
JPH_INLINE UVec4 operator * (UVec4Arg inV2) const;
/// Adds an integer value to all integer components (discards any overflow)
JPH_INLINE UVec4 operator + (UVec4Arg inV2);
/// Add two integer vectors (component wise)
JPH_INLINE UVec4 & operator += (UVec4Arg inV2);
/// Replicate the X component to all components
JPH_INLINE UVec4 SplatX() const;
/// Replicate the Y component to all components
JPH_INLINE UVec4 SplatY() const;
/// Replicate the Z component to all components
JPH_INLINE UVec4 SplatZ() const;
/// Replicate the W component to all components
JPH_INLINE UVec4 SplatW() const;
/// Convert each component from an int to a float
JPH_INLINE Vec4 ToFloat() const;
/// Reinterpret UVec4 as a Vec4 (doesn't change the bits)
JPH_INLINE Vec4 ReinterpretAsFloat() const;
/// Store 4 ints to memory
JPH_INLINE void StoreInt4(uint32 *outV) const;
/// Store 4 ints to memory, aligned to 16 bytes
JPH_INLINE void StoreInt4Aligned(uint32 *outV) const;
/// Test if any of the components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAnyTrue() const;
/// Test if any of X, Y or Z components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAnyXYZTrue() const;
/// Test if all components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAllTrue() const;
/// Test if X, Y and Z components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAllXYZTrue() const;
/// Count the number of components that are true (true is when highest bit of component is set)
JPH_INLINE int CountTrues() const;
/// Store if X is true in bit 0, Y in bit 1, Z in bit 2 and W in bit 3 (true is when highest bit of component is set)
JPH_INLINE int GetTrues() const;
/// Shift all components by Count bits to the left (filling with zeros from the left)
template <const uint Count>
JPH_INLINE UVec4 LogicalShiftLeft() const;
/// Shift all components by Count bits to the right (filling with zeros from the right)
template <const uint Count>
JPH_INLINE UVec4 LogicalShiftRight() const;
/// Shift all components by Count bits to the right (shifting in the value of the highest bit)
template <const uint Count>
JPH_INLINE UVec4 ArithmeticShiftRight() const;
/// Takes the lower 4 16 bits and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Uint16Lo() const;
/// Takes the upper 4 16 bits and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Uint16Hi() const;
/// Takes byte 0 .. 3 and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Byte0() const;
/// Takes byte 4 .. 7 and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Byte4() const;
/// Takes byte 8 .. 11 and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Byte8() const;
/// Takes byte 12 .. 15 and expands them to X, Y, Z and W
JPH_INLINE UVec4 Expand4Byte12() const;
/// Shift vector components by 4 - Count floats to the left, so if Count = 1 the resulting vector is (W, 0, 0, 0), when Count = 3 the resulting vector is (Y, Z, W, 0)
JPH_INLINE UVec4 ShiftComponents4Minus(int inCount) const;
/// To String
friend ostream & operator << (ostream &inStream, UVec4Arg inV)
{
inStream << inV.mU32[0] << ", " << inV.mU32[1] << ", " << inV.mU32[2] << ", " << inV.mU32[3];
return inStream;
}
union
{
Type mValue;
uint32 mU32[4];
};
};
static_assert(std::is_trivial<UVec4>(), "Is supposed to be a trivial type!");
JPH_NAMESPACE_END
#include "UVec4.inl"