329 lines
8.7 KiB
C++
329 lines
8.7 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
Quat Quat::operator * (QuatArg inRHS) const
|
|
{
|
|
#if defined(JPH_USE_SSE4_1)
|
|
// Taken from: http://momchil-velikov.blogspot.nl/2013/10/fast-sse-quternion-multiplication.html
|
|
__m128 abcd = mValue.mValue;
|
|
__m128 xyzw = inRHS.mValue.mValue;
|
|
|
|
__m128 t0 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(3, 3, 3, 3));
|
|
__m128 t1 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 3, 0, 1));
|
|
|
|
__m128 t3 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(0, 0, 0, 0));
|
|
__m128 t4 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(1, 0, 3, 2));
|
|
|
|
__m128 t5 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(1, 1, 1, 1));
|
|
__m128 t6 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1));
|
|
|
|
// [d,d,d,d] * [z,w,x,y] = [dz,dw,dx,dy]
|
|
__m128 m0 = _mm_mul_ps(t0, t1);
|
|
|
|
// [a,a,a,a] * [y,x,w,z] = [ay,ax,aw,az]
|
|
__m128 m1 = _mm_mul_ps(t3, t4);
|
|
|
|
// [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by]
|
|
__m128 m2 = _mm_mul_ps(t5, t6);
|
|
|
|
// [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy]
|
|
__m128 t7 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(2, 2, 2, 2));
|
|
__m128 t8 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1));
|
|
__m128 m3 = _mm_mul_ps(t7, t8);
|
|
|
|
// [dz,dw,dx,dy] + -[ay,ax,aw,az] = [dz+ay,dw-ax,dx+aw,dy-az]
|
|
__m128 e = _mm_addsub_ps(m0, m1);
|
|
|
|
// [dx+aw,dz+ay,dy-az,dw-ax]
|
|
e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(1, 3, 0, 2));
|
|
|
|
// [dx+aw,dz+ay,dy-az,dw-ax] + -[bz,bx,bw,by] = [dx+aw+bz,dz+ay-bx,dy-az+bw,dw-ax-by]
|
|
e = _mm_addsub_ps(e, m2);
|
|
|
|
// [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz]
|
|
e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3));
|
|
|
|
// [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz] + -[cw,cz,cx,cy] = [dz+ay-bx+cw,dw-ax-by-cz,dy-az+bw+cx,dx+aw+bz-cy]
|
|
e = _mm_addsub_ps(e, m3);
|
|
|
|
// [dw-ax-by-cz,dz+ay-bx+cw,dy-az+bw+cx,dx+aw+bz-cy]
|
|
return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0))));
|
|
#else
|
|
float lx = mValue.GetX();
|
|
float ly = mValue.GetY();
|
|
float lz = mValue.GetZ();
|
|
float lw = mValue.GetW();
|
|
|
|
float rx = inRHS.mValue.GetX();
|
|
float ry = inRHS.mValue.GetY();
|
|
float rz = inRHS.mValue.GetZ();
|
|
float rw = inRHS.mValue.GetW();
|
|
|
|
float x = lw * rx + lx * rw + ly * rz - lz * ry;
|
|
float y = lw * ry - lx * rz + ly * rw + lz * rx;
|
|
float z = lw * rz + lx * ry - ly * rx + lz * rw;
|
|
float w = lw * rw - lx * rx - ly * ry - lz * rz;
|
|
|
|
return Quat(x, y, z, w);
|
|
#endif
|
|
}
|
|
|
|
Quat Quat::sRotation(Vec3Arg inAxis, float inAngle)
|
|
{
|
|
// returns [inAxis * sin(0.5f * inAngle), cos(0.5f * inAngle)]
|
|
JPH_ASSERT(inAxis.IsNormalized());
|
|
Vec4 s, c;
|
|
Vec4::sReplicate(0.5f * inAngle).SinCos(s, c);
|
|
return Quat(Vec4::sSelect(Vec4(inAxis) * s, c, UVec4(0, 0, 0, 0xffffffffU)));
|
|
}
|
|
|
|
void Quat::GetAxisAngle(Vec3 &outAxis, float &outAngle) const
|
|
{
|
|
JPH_ASSERT(IsNormalized());
|
|
Quat w_pos = EnsureWPositive();
|
|
float abs_w = w_pos.GetW();
|
|
if (abs_w >= 1.0f)
|
|
{
|
|
outAxis = Vec3::sZero();
|
|
outAngle = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
outAngle = 2.0f * ACos(abs_w);
|
|
outAxis = w_pos.GetXYZ().NormalizedOr(Vec3::sZero());
|
|
}
|
|
}
|
|
|
|
Quat Quat::sFromTo(Vec3Arg inFrom, Vec3Arg inTo)
|
|
{
|
|
/*
|
|
Uses (inFrom = v1, inTo = v2):
|
|
|
|
angle = arcos(v1 . v2 / |v1||v2|)
|
|
axis = normalize(v1 x v2)
|
|
|
|
Quaternion is then:
|
|
|
|
s = sin(angle / 2)
|
|
x = axis.x * s
|
|
y = axis.y * s
|
|
z = axis.z * s
|
|
w = cos(angle / 2)
|
|
|
|
Using identities:
|
|
|
|
sin(2 * a) = 2 * sin(a) * cos(a)
|
|
cos(2 * a) = cos(a)^2 - sin(a)^2
|
|
sin(a)^2 + cos(a)^2 = 1
|
|
|
|
This reduces to:
|
|
|
|
x = (v1 x v2).x
|
|
y = (v1 x v2).y
|
|
z = (v1 x v2).z
|
|
w = |v1||v2| + v1 . v2
|
|
|
|
which then needs to be normalized because the whole equation was multiplied by 2 cos(angle / 2)
|
|
*/
|
|
|
|
float len_v1_v2 = sqrt(inFrom.LengthSq() * inTo.LengthSq());
|
|
float w = len_v1_v2 + inFrom.Dot(inTo);
|
|
|
|
if (w == 0.0f)
|
|
{
|
|
if (len_v1_v2 == 0.0f)
|
|
{
|
|
// If either of the vectors has zero length, there is no rotation and we return identity
|
|
return Quat::sIdentity();
|
|
}
|
|
else
|
|
{
|
|
// If vectors are perpendicular, take one of the many 180 degree rotations that exist
|
|
return Quat(Vec4(inFrom.GetNormalizedPerpendicular(), 0));
|
|
}
|
|
}
|
|
|
|
Vec3 v = inFrom.Cross(inTo);
|
|
return Quat(Vec4(v, w)).Normalized();
|
|
}
|
|
|
|
template <class Random>
|
|
Quat Quat::sRandom(Random &inRandom)
|
|
{
|
|
std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
|
|
float x0 = zero_to_one(inRandom);
|
|
float r1 = sqrt(1.0f - x0), r2 = sqrt(x0);
|
|
std::uniform_real_distribution<float> zero_to_two_pi(0.0f, 2.0f * JPH_PI);
|
|
Vec4 s, c;
|
|
Vec4(zero_to_two_pi(inRandom), zero_to_two_pi(inRandom), 0, 0).SinCos(s, c);
|
|
return Quat(s.GetX() * r1, c.GetX() * r1, s.GetY() * r2, c.GetY() * r2);
|
|
}
|
|
|
|
Quat Quat::sEulerAngles(Vec3Arg inAngles)
|
|
{
|
|
Vec4 half(0.5f * inAngles);
|
|
Vec4 s, c;
|
|
half.SinCos(s, c);
|
|
|
|
float cx = c.GetX();
|
|
float sx = s.GetX();
|
|
float cy = c.GetY();
|
|
float sy = s.GetY();
|
|
float cz = c.GetZ();
|
|
float sz = s.GetZ();
|
|
|
|
return Quat(
|
|
cz * sx * cy - sz * cx * sy,
|
|
cz * cx * sy + sz * sx * cy,
|
|
sz * cx * cy - cz * sx * sy,
|
|
cz * cx * cy + sz * sx * sy);
|
|
}
|
|
|
|
Vec3 Quat::GetEulerAngles() const
|
|
{
|
|
float y_sq = GetY() * GetY();
|
|
|
|
// X
|
|
float t0 = 2.0f * (GetW() * GetX() + GetY() * GetZ());
|
|
float t1 = 1.0f - 2.0f * (GetX() * GetX() + y_sq);
|
|
|
|
// Y
|
|
float t2 = 2.0f * (GetW() * GetY() - GetZ() * GetX());
|
|
t2 = t2 > 1.0f? 1.0f : t2;
|
|
t2 = t2 < -1.0f? -1.0f : t2;
|
|
|
|
// Z
|
|
float t3 = 2.0f * (GetW() * GetZ() + GetX() * GetY());
|
|
float t4 = 1.0f - 2.0f * (y_sq + GetZ() * GetZ());
|
|
|
|
return Vec3(ATan2(t0, t1), ASin(t2), ATan2(t3, t4));
|
|
}
|
|
|
|
Quat Quat::GetTwist(Vec3Arg inAxis) const
|
|
{
|
|
Quat twist(Vec4(GetXYZ().Dot(inAxis) * inAxis, GetW()));
|
|
float twist_len = twist.LengthSq();
|
|
if (twist_len != 0.0f)
|
|
return twist / sqrt(twist_len);
|
|
else
|
|
return Quat::sIdentity();
|
|
}
|
|
|
|
void Quat::GetSwingTwist(Quat &outSwing, Quat &outTwist) const
|
|
{
|
|
float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
|
|
float s = sqrt(Square(w) + Square(x));
|
|
if (s != 0.0f)
|
|
{
|
|
outTwist = Quat(x / s, 0, 0, w / s);
|
|
outSwing = Quat(0, (w * y - x * z) / s, (w * z + x * y) / s, s);
|
|
}
|
|
else
|
|
{
|
|
// If both x and w are zero, this must be a 180 degree rotation around either y or z
|
|
outTwist = Quat::sIdentity();
|
|
outSwing = *this;
|
|
}
|
|
}
|
|
|
|
Quat Quat::LERP(QuatArg inDestination, float inFraction) const
|
|
{
|
|
float scale0 = 1.0f - inFraction;
|
|
return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(inFraction) * inDestination.mValue);
|
|
}
|
|
|
|
Quat Quat::SLERP(QuatArg inDestination, float inFraction) const
|
|
{
|
|
// Difference at which to LERP instead of SLERP
|
|
const float delta = 0.0001f;
|
|
|
|
// Calc cosine
|
|
float sign_scale1 = 1.0f;
|
|
float cos_omega = Dot(inDestination);
|
|
|
|
// Adjust signs (if necessary)
|
|
if (cos_omega < 0.0f)
|
|
{
|
|
cos_omega = -cos_omega;
|
|
sign_scale1 = -1.0f;
|
|
}
|
|
|
|
// Calculate coefficients
|
|
float scale0, scale1;
|
|
if (1.0f - cos_omega > delta)
|
|
{
|
|
// Standard case (slerp)
|
|
float omega = ACos(cos_omega);
|
|
float sin_omega = Sin(omega);
|
|
scale0 = Sin((1.0f - inFraction) * omega) / sin_omega;
|
|
scale1 = sign_scale1 * Sin(inFraction * omega) / sin_omega;
|
|
}
|
|
else
|
|
{
|
|
// Quaternions are very close so we can do a linear interpolation
|
|
scale0 = 1.0f - inFraction;
|
|
scale1 = sign_scale1 * inFraction;
|
|
}
|
|
|
|
// Interpolate between the two quaternions
|
|
return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(scale1) * inDestination.mValue).Normalized();
|
|
}
|
|
|
|
Vec3 Quat::operator * (Vec3Arg inValue) const
|
|
{
|
|
// Rotating a vector by a quaternion is done by: p' = q * p * q^-1 (q^-1 = conjugated(q) for a unit quaternion)
|
|
JPH_ASSERT(IsNormalized());
|
|
return Vec3((*this * Quat(Vec4(inValue, 0)) * Conjugated()).mValue);
|
|
}
|
|
|
|
Vec3 Quat::InverseRotate(Vec3Arg inValue) const
|
|
{
|
|
JPH_ASSERT(IsNormalized());
|
|
return Vec3((Conjugated() * Quat(Vec4(inValue, 0)) * *this).mValue);
|
|
}
|
|
|
|
Vec3 Quat::RotateAxisX() const
|
|
{
|
|
// This is *this * Vec3::sAxisX() written out:
|
|
JPH_ASSERT(IsNormalized());
|
|
float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
|
|
float tx = 2.0f * x, tw = 2.0f * w;
|
|
return Vec3(tx * x + tw * w - 1.0f, tx * y + z * tw, tx * z - y * tw);
|
|
}
|
|
|
|
Vec3 Quat::RotateAxisY() const
|
|
{
|
|
// This is *this * Vec3::sAxisY() written out:
|
|
JPH_ASSERT(IsNormalized());
|
|
float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
|
|
float ty = 2.0f * y, tw = 2.0f * w;
|
|
return Vec3(x * ty - z * tw, tw * w + ty * y - 1.0f, x * tw + ty * z);
|
|
}
|
|
|
|
Vec3 Quat::RotateAxisZ() const
|
|
{
|
|
// This is *this * Vec3::sAxisZ() written out:
|
|
JPH_ASSERT(IsNormalized());
|
|
float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
|
|
float tz = 2.0f * z, tw = 2.0f * w;
|
|
return Vec3(x * tz + y * tw, y * tz - x * tw, tw * w + tz * z - 1.0f);
|
|
}
|
|
|
|
void Quat::StoreFloat3(Float3 *outV) const
|
|
{
|
|
JPH_ASSERT(IsNormalized());
|
|
EnsureWPositive().GetXYZ().StoreFloat3(outV);
|
|
}
|
|
|
|
Quat Quat::sLoadFloat3Unsafe(const Float3 &inV)
|
|
{
|
|
Vec3 v = Vec3::sLoadFloat3Unsafe(inV);
|
|
float w = sqrt(max(1.0f - v.LengthSq(), 0.0f)); // It is possible that the length of v is a fraction above 1, and we don't want to introduce NaN's in that case so we clamp to 0
|
|
return Quat(Vec4(v, w));
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|