godot-module-template/engine/thirdparty/jolt_physics/Jolt/Math/HalfFloat.h
2025-04-12 18:40:44 +02:00

209 lines
7.5 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Vec4.h>
#include <Jolt/Core/FPException.h>
JPH_NAMESPACE_BEGIN
using HalfFloat = uint16;
// Define half float constant values
static constexpr HalfFloat HALF_FLT_MAX = 0x7bff;
static constexpr HalfFloat HALF_FLT_MAX_NEGATIVE = 0xfbff;
static constexpr HalfFloat HALF_FLT_INF = 0x7c00;
static constexpr HalfFloat HALF_FLT_INF_NEGATIVE = 0xfc00;
static constexpr HalfFloat HALF_FLT_NANQ = 0x7e00;
static constexpr HalfFloat HALF_FLT_NANQ_NEGATIVE = 0xfe00;
namespace HalfFloatConversion {
// Layout of a float
static constexpr int FLOAT_SIGN_POS = 31;
static constexpr int FLOAT_EXPONENT_POS = 23;
static constexpr int FLOAT_EXPONENT_BITS = 8;
static constexpr int FLOAT_EXPONENT_MASK = (1 << FLOAT_EXPONENT_BITS) - 1;
static constexpr int FLOAT_EXPONENT_BIAS = 127;
static constexpr int FLOAT_MANTISSA_BITS = 23;
static constexpr int FLOAT_MANTISSA_MASK = (1 << FLOAT_MANTISSA_BITS) - 1;
static constexpr int FLOAT_EXPONENT_AND_MANTISSA_MASK = FLOAT_MANTISSA_MASK + (FLOAT_EXPONENT_MASK << FLOAT_EXPONENT_POS);
// Layout of half float
static constexpr int HALF_FLT_SIGN_POS = 15;
static constexpr int HALF_FLT_EXPONENT_POS = 10;
static constexpr int HALF_FLT_EXPONENT_BITS = 5;
static constexpr int HALF_FLT_EXPONENT_MASK = (1 << HALF_FLT_EXPONENT_BITS) - 1;
static constexpr int HALF_FLT_EXPONENT_BIAS = 15;
static constexpr int HALF_FLT_MANTISSA_BITS = 10;
static constexpr int HALF_FLT_MANTISSA_MASK = (1 << HALF_FLT_MANTISSA_BITS) - 1;
static constexpr int HALF_FLT_EXPONENT_AND_MANTISSA_MASK = HALF_FLT_MANTISSA_MASK + (HALF_FLT_EXPONENT_MASK << HALF_FLT_EXPONENT_POS);
/// Define half-float rounding modes
enum ERoundingMode
{
ROUND_TO_NEG_INF, ///< Round to negative infinity
ROUND_TO_POS_INF, ///< Round to positive infinity
ROUND_TO_NEAREST, ///< Round to nearest value
};
/// Convert a float (32-bits) to a half float (16-bits), fallback version when no intrinsics available
template <int RoundingMode>
inline HalfFloat FromFloatFallback(float inV)
{
// Reinterpret the float as an uint32
uint32 value = BitCast<uint32>(inV);
// Extract exponent
uint32 exponent = (value >> FLOAT_EXPONENT_POS) & FLOAT_EXPONENT_MASK;
// Extract mantissa
uint32 mantissa = value & FLOAT_MANTISSA_MASK;
// Extract the sign and move it into the right spot for the half float (so we can just or it in at the end)
HalfFloat hf_sign = HalfFloat(value >> (FLOAT_SIGN_POS - HALF_FLT_SIGN_POS)) & (1 << HALF_FLT_SIGN_POS);
// Check NaN or INF
if (exponent == FLOAT_EXPONENT_MASK) // NaN or INF
return hf_sign | (mantissa == 0? HALF_FLT_INF : HALF_FLT_NANQ);
// Rebias the exponent for half floats
int rebiased_exponent = int(exponent) - FLOAT_EXPONENT_BIAS + HALF_FLT_EXPONENT_BIAS;
// Check overflow to infinity
if (rebiased_exponent >= HALF_FLT_EXPONENT_MASK)
{
bool round_up = RoundingMode == ROUND_TO_NEAREST || (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF);
return hf_sign | (round_up? HALF_FLT_INF : HALF_FLT_MAX);
}
// Check underflow to zero
if (rebiased_exponent < -HALF_FLT_MANTISSA_BITS)
{
bool round_up = RoundingMode != ROUND_TO_NEAREST && (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF) && (value & FLOAT_EXPONENT_AND_MANTISSA_MASK) != 0;
return hf_sign | (round_up? 1 : 0);
}
HalfFloat hf_exponent;
int shift;
if (rebiased_exponent <= 0)
{
// Underflow to denormalized number
hf_exponent = 0;
mantissa |= 1 << FLOAT_MANTISSA_BITS; // Add the implicit 1 bit to the mantissa
shift = FLOAT_MANTISSA_BITS - HALF_FLT_MANTISSA_BITS + 1 - rebiased_exponent;
}
else
{
// Normal half float
hf_exponent = HalfFloat(rebiased_exponent << HALF_FLT_EXPONENT_POS);
shift = FLOAT_MANTISSA_BITS - HALF_FLT_MANTISSA_BITS;
}
// Compose the half float
HalfFloat hf_mantissa = HalfFloat(mantissa >> shift);
HalfFloat hf = hf_sign | hf_exponent | hf_mantissa;
// Calculate the remaining bits that we're discarding
uint remainder = mantissa & ((1 << shift) - 1);
if constexpr (RoundingMode == ROUND_TO_NEAREST)
{
// Round to nearest
uint round_threshold = 1 << (shift - 1);
if (remainder > round_threshold // Above threshold, we must always round
|| (remainder == round_threshold && (hf_mantissa & 1))) // When equal, round to nearest even
hf++; // May overflow to infinity
}
else
{
// Round up or down (truncate) depending on the rounding mode
bool round_up = (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF) && remainder != 0;
if (round_up)
hf++; // May overflow to infinity
}
return hf;
}
/// Convert a float (32-bits) to a half float (16-bits)
template <int RoundingMode>
JPH_INLINE HalfFloat FromFloat(float inV)
{
#ifdef JPH_USE_F16C
FPExceptionDisableOverflow disable_overflow;
JPH_UNUSED(disable_overflow);
union
{
__m128i u128;
HalfFloat u16[8];
} hf;
__m128 val = _mm_load_ss(&inV);
switch (RoundingMode)
{
case ROUND_TO_NEG_INF:
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_NEG_INF);
break;
case ROUND_TO_POS_INF:
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_POS_INF);
break;
case ROUND_TO_NEAREST:
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_NEAREST_INT);
break;
}
return hf.u16[0];
#else
return FromFloatFallback<RoundingMode>(inV);
#endif
}
/// Convert 4 half floats (lower 64 bits) to floats, fallback version when no intrinsics available
inline Vec4 ToFloatFallback(UVec4Arg inValue)
{
// Unpack half floats to 4 uint32's
UVec4 value = inValue.Expand4Uint16Lo();
// Normal half float path, extract the exponent and mantissa, shift them into place and update the exponent bias
UVec4 exponent_mantissa = UVec4::sAnd(value, UVec4::sReplicate(HALF_FLT_EXPONENT_AND_MANTISSA_MASK)).LogicalShiftLeft<FLOAT_EXPONENT_POS - HALF_FLT_EXPONENT_POS>() + UVec4::sReplicate((FLOAT_EXPONENT_BIAS - HALF_FLT_EXPONENT_BIAS) << FLOAT_EXPONENT_POS);
// Denormalized half float path, renormalize the float
UVec4 exponent_mantissa_denormalized = ((exponent_mantissa + UVec4::sReplicate(1 << FLOAT_EXPONENT_POS)).ReinterpretAsFloat() - UVec4::sReplicate((FLOAT_EXPONENT_BIAS - HALF_FLT_EXPONENT_BIAS + 1) << FLOAT_EXPONENT_POS).ReinterpretAsFloat()).ReinterpretAsInt();
// NaN / INF path, set all exponent bits
UVec4 exponent_mantissa_nan_inf = UVec4::sOr(exponent_mantissa, UVec4::sReplicate(FLOAT_EXPONENT_MASK << FLOAT_EXPONENT_POS));
// Get the exponent to determine which of the paths we should take
UVec4 exponent_mask = UVec4::sReplicate(HALF_FLT_EXPONENT_MASK << HALF_FLT_EXPONENT_POS);
UVec4 exponent = UVec4::sAnd(value, exponent_mask);
UVec4 is_denormalized = UVec4::sEquals(exponent, UVec4::sZero());
UVec4 is_nan_inf = UVec4::sEquals(exponent, exponent_mask);
// Select the correct result
UVec4 result_exponent_mantissa = UVec4::sSelect(UVec4::sSelect(exponent_mantissa, exponent_mantissa_nan_inf, is_nan_inf), exponent_mantissa_denormalized, is_denormalized);
// Extract the sign bit and shift it to the left
UVec4 sign = UVec4::sAnd(value, UVec4::sReplicate(1 << HALF_FLT_SIGN_POS)).LogicalShiftLeft<FLOAT_SIGN_POS - HALF_FLT_SIGN_POS>();
// Construct the float
return UVec4::sOr(sign, result_exponent_mantissa).ReinterpretAsFloat();
}
/// Convert 4 half floats (lower 64 bits) to floats
JPH_INLINE Vec4 ToFloat(UVec4Arg inValue)
{
#if defined(JPH_USE_F16C)
return _mm_cvtph_ps(inValue.mValue);
#elif defined(JPH_USE_NEON)
return vcvt_f32_f16(vreinterpret_f16_u32(vget_low_u32(inValue.mValue)));
#else
return ToFloatFallback(inValue);
#endif
}
} // HalfFloatConversion
JPH_NAMESPACE_END