178 lines
5.1 KiB
C++
178 lines
5.1 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Core/FPException.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Function to determine the eigen vectors and values of a N x N real symmetric matrix
|
|
/// by Jacobi transformations. This method is most suitable for N < 10.
|
|
///
|
|
/// Taken and adapted from Numerical Recipes paragraph 11.1
|
|
///
|
|
/// An eigen vector is a vector v for which \f$A \: v = \lambda \: v\f$
|
|
///
|
|
/// Where:
|
|
/// A: A square matrix.
|
|
/// \f$\lambda\f$: a non-zero constant value.
|
|
///
|
|
/// @see https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
|
|
///
|
|
/// Matrix is a matrix type, which has dimensions N x N.
|
|
/// @param inMatrix is the matrix of which to return the eigenvalues and vectors
|
|
/// @param outEigVec will contain a matrix whose columns contain the normalized eigenvectors (must be identity before call)
|
|
/// @param outEigVal will contain the eigenvalues
|
|
template <class Vector, class Matrix>
|
|
bool EigenValueSymmetric(const Matrix &inMatrix, Matrix &outEigVec, Vector &outEigVal)
|
|
{
|
|
// This algorithm can generate infinite values, see comment below
|
|
FPExceptionDisableInvalid disable_invalid;
|
|
JPH_UNUSED(disable_invalid);
|
|
|
|
// Maximum number of sweeps to make
|
|
const int cMaxSweeps = 50;
|
|
|
|
// Get problem dimension
|
|
const uint n = inMatrix.GetRows();
|
|
|
|
// Make sure the dimensions are right
|
|
JPH_ASSERT(inMatrix.GetRows() == n);
|
|
JPH_ASSERT(inMatrix.GetCols() == n);
|
|
JPH_ASSERT(outEigVec.GetRows() == n);
|
|
JPH_ASSERT(outEigVec.GetCols() == n);
|
|
JPH_ASSERT(outEigVal.GetRows() == n);
|
|
JPH_ASSERT(outEigVec.IsIdentity());
|
|
|
|
// Get the matrix in a so we can mess with it
|
|
Matrix a = inMatrix;
|
|
|
|
Vector b, z;
|
|
|
|
for (uint ip = 0; ip < n; ++ip)
|
|
{
|
|
// Initialize b to diagonal of a
|
|
b[ip] = a(ip, ip);
|
|
|
|
// Initialize output to diagonal of a
|
|
outEigVal[ip] = a(ip, ip);
|
|
|
|
// Reset z
|
|
z[ip] = 0.0f;
|
|
}
|
|
|
|
for (int sweep = 0; sweep < cMaxSweeps; ++sweep)
|
|
{
|
|
// Get the sum of the off-diagonal elements of a
|
|
float sm = 0.0f;
|
|
for (uint ip = 0; ip < n - 1; ++ip)
|
|
for (uint iq = ip + 1; iq < n; ++iq)
|
|
sm += abs(a(ip, iq));
|
|
float avg_sm = sm / Square(n);
|
|
|
|
// Normal return, convergence to machine underflow
|
|
if (avg_sm < FLT_MIN) // Original code: sm == 0.0f, when the average is denormal, we also consider it machine underflow
|
|
{
|
|
// Sanity checks
|
|
#ifdef JPH_ENABLE_ASSERTS
|
|
for (uint c = 0; c < n; ++c)
|
|
{
|
|
// Check if the eigenvector is normalized
|
|
JPH_ASSERT(outEigVec.GetColumn(c).IsNormalized());
|
|
|
|
// Check if inMatrix * eigen_vector = eigen_value * eigen_vector
|
|
Vector mat_eigvec = inMatrix * outEigVec.GetColumn(c);
|
|
Vector eigval_eigvec = outEigVal[c] * outEigVec.GetColumn(c);
|
|
JPH_ASSERT(mat_eigvec.IsClose(eigval_eigvec, max(mat_eigvec.LengthSq(), eigval_eigvec.LengthSq()) * 1.0e-6f));
|
|
}
|
|
#endif
|
|
|
|
// Success
|
|
return true;
|
|
}
|
|
|
|
// On the first three sweeps use a fraction of the sum of the off diagonal elements as threshold
|
|
// Note that we pick a minimum threshold of FLT_MIN because dividing by a denormalized number is likely to result in infinity.
|
|
float thresh = sweep < 4? 0.2f * avg_sm : FLT_MIN; // Original code: 0.0f instead of FLT_MIN
|
|
|
|
for (uint ip = 0; ip < n - 1; ++ip)
|
|
for (uint iq = ip + 1; iq < n; ++iq)
|
|
{
|
|
float &a_pq = a(ip, iq);
|
|
float &eigval_p = outEigVal[ip];
|
|
float &eigval_q = outEigVal[iq];
|
|
|
|
float abs_a_pq = abs(a_pq);
|
|
float g = 100.0f * abs_a_pq;
|
|
|
|
// After four sweeps, skip the rotation if the off-diagonal element is small
|
|
if (sweep > 4
|
|
&& abs(eigval_p) + g == abs(eigval_p)
|
|
&& abs(eigval_q) + g == abs(eigval_q))
|
|
{
|
|
a_pq = 0.0f;
|
|
}
|
|
else if (abs_a_pq > thresh)
|
|
{
|
|
float h = eigval_q - eigval_p;
|
|
float abs_h = abs(h);
|
|
|
|
float t;
|
|
if (abs_h + g == abs_h)
|
|
{
|
|
t = a_pq / h;
|
|
}
|
|
else
|
|
{
|
|
float theta = 0.5f * h / a_pq; // Warning: Can become infinite if a(ip, iq) is very small which may trigger an invalid float exception
|
|
t = 1.0f / (abs(theta) + sqrt(1.0f + theta * theta)); // If theta becomes inf, t will be 0 so the infinite is not a problem for the algorithm
|
|
if (theta < 0.0f) t = -t;
|
|
}
|
|
|
|
float c = 1.0f / sqrt(1.0f + t * t);
|
|
float s = t * c;
|
|
float tau = s / (1.0f + c);
|
|
h = t * a_pq;
|
|
|
|
a_pq = 0.0f;
|
|
|
|
z[ip] -= h;
|
|
z[iq] += h;
|
|
|
|
eigval_p -= h;
|
|
eigval_q += h;
|
|
|
|
#define JPH_EVS_ROTATE(a, i, j, k, l) \
|
|
g = a(i, j), \
|
|
h = a(k, l), \
|
|
a(i, j) = g - s * (h + g * tau), \
|
|
a(k, l) = h + s * (g - h * tau)
|
|
|
|
uint j;
|
|
for (j = 0; j < ip; ++j) JPH_EVS_ROTATE(a, j, ip, j, iq);
|
|
for (j = ip + 1; j < iq; ++j) JPH_EVS_ROTATE(a, ip, j, j, iq);
|
|
for (j = iq + 1; j < n; ++j) JPH_EVS_ROTATE(a, ip, j, iq, j);
|
|
for (j = 0; j < n; ++j) JPH_EVS_ROTATE(outEigVec, j, ip, j, iq);
|
|
|
|
#undef JPH_EVS_ROTATE
|
|
}
|
|
}
|
|
|
|
// Update eigenvalues with the sum of ta_pq and reinitialize z
|
|
for (uint ip = 0; ip < n; ++ip)
|
|
{
|
|
b[ip] += z[ip];
|
|
outEigVal[ip] = b[ip];
|
|
z[ip] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Failure
|
|
JPH_ASSERT(false, "Too many iterations");
|
|
return false;
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|