godot-module-template/engine/thirdparty/jolt_physics/Jolt/Math/DVec3.h
2025-04-12 18:40:44 +02:00

292 lines
10 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Double3.h>
JPH_NAMESPACE_BEGIN
/// 3 component vector of doubles (stored as 4 vectors).
/// Note that we keep the 4th component the same as the 3rd component to avoid divisions by zero when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED defined
class [[nodiscard]] alignas(JPH_DVECTOR_ALIGNMENT) DVec3
{
public:
JPH_OVERRIDE_NEW_DELETE
// Underlying vector type
#if defined(JPH_USE_AVX)
using Type = __m256d;
using TypeArg = __m256d;
#elif defined(JPH_USE_SSE)
using Type = struct { __m128d mLow, mHigh; };
using TypeArg = const Type &;
#elif defined(JPH_USE_NEON)
using Type = float64x2x2_t;
using TypeArg = const Type &;
#else
using Type = struct { double mData[4]; };
using TypeArg = const Type &;
#endif
// Argument type
using ArgType = DVec3Arg;
/// Constructor
DVec3() = default; ///< Intentionally not initialized for performance reasons
DVec3(const DVec3 &inRHS) = default;
DVec3 & operator = (const DVec3 &inRHS) = default;
JPH_INLINE explicit DVec3(Vec3Arg inRHS);
JPH_INLINE explicit DVec3(Vec4Arg inRHS);
JPH_INLINE DVec3(TypeArg inRHS) : mValue(inRHS) { CheckW(); }
/// Create a vector from 3 components
JPH_INLINE DVec3(double inX, double inY, double inZ);
/// Load 3 doubles from memory
explicit JPH_INLINE DVec3(const Double3 &inV);
/// Vector with all zeros
static JPH_INLINE DVec3 sZero();
/// Vector with all ones
static JPH_INLINE DVec3 sOne();
/// Vectors with the principal axis
static JPH_INLINE DVec3 sAxisX() { return DVec3(1, 0, 0); }
static JPH_INLINE DVec3 sAxisY() { return DVec3(0, 1, 0); }
static JPH_INLINE DVec3 sAxisZ() { return DVec3(0, 0, 1); }
/// Replicate inV across all components
static JPH_INLINE DVec3 sReplicate(double inV);
/// Vector with all NaN's
static JPH_INLINE DVec3 sNaN();
/// Load 3 doubles from memory (reads 64 bits extra which it doesn't use)
static JPH_INLINE DVec3 sLoadDouble3Unsafe(const Double3 &inV);
/// Store 3 doubles to memory
JPH_INLINE void StoreDouble3(Double3 *outV) const;
/// Convert to float vector 3 rounding to nearest
JPH_INLINE explicit operator Vec3() const;
/// Prepare to convert to float vector 3 rounding towards zero (returns DVec3 that can be converted to a Vec3 to get the rounding)
JPH_INLINE DVec3 PrepareRoundToZero() const;
/// Prepare to convert to float vector 3 rounding towards positive/negative inf (returns DVec3 that can be converted to a Vec3 to get the rounding)
JPH_INLINE DVec3 PrepareRoundToInf() const;
/// Convert to float vector 3 rounding down
JPH_INLINE Vec3 ToVec3RoundDown() const;
/// Convert to float vector 3 rounding up
JPH_INLINE Vec3 ToVec3RoundUp() const;
/// Return the minimum value of each of the components
static JPH_INLINE DVec3 sMin(DVec3Arg inV1, DVec3Arg inV2);
/// Return the maximum of each of the components
static JPH_INLINE DVec3 sMax(DVec3Arg inV1, DVec3Arg inV2);
/// Clamp a vector between min and max (component wise)
static JPH_INLINE DVec3 sClamp(DVec3Arg inV, DVec3Arg inMin, DVec3Arg inMax);
/// Equals (component wise)
static JPH_INLINE DVec3 sEquals(DVec3Arg inV1, DVec3Arg inV2);
/// Less than (component wise)
static JPH_INLINE DVec3 sLess(DVec3Arg inV1, DVec3Arg inV2);
/// Less than or equal (component wise)
static JPH_INLINE DVec3 sLessOrEqual(DVec3Arg inV1, DVec3Arg inV2);
/// Greater than (component wise)
static JPH_INLINE DVec3 sGreater(DVec3Arg inV1, DVec3Arg inV2);
/// Greater than or equal (component wise)
static JPH_INLINE DVec3 sGreaterOrEqual(DVec3Arg inV1, DVec3Arg inV2);
/// Calculates inMul1 * inMul2 + inAdd
static JPH_INLINE DVec3 sFusedMultiplyAdd(DVec3Arg inMul1, DVec3Arg inMul2, DVec3Arg inAdd);
/// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1
static JPH_INLINE DVec3 sSelect(DVec3Arg inNotSet, DVec3Arg inSet, DVec3Arg inControl);
/// Logical or (component wise)
static JPH_INLINE DVec3 sOr(DVec3Arg inV1, DVec3Arg inV2);
/// Logical xor (component wise)
static JPH_INLINE DVec3 sXor(DVec3Arg inV1, DVec3Arg inV2);
/// Logical and (component wise)
static JPH_INLINE DVec3 sAnd(DVec3Arg inV1, DVec3Arg inV2);
/// Store if X is true in bit 0, Y in bit 1, Z in bit 2 and W in bit 3 (true is when highest bit of component is set)
JPH_INLINE int GetTrues() const;
/// Test if any of the components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAnyTrue() const;
/// Test if all components are true (true is when highest bit of component is set)
JPH_INLINE bool TestAllTrue() const;
/// Get individual components
#if defined(JPH_USE_AVX)
JPH_INLINE double GetX() const { return _mm_cvtsd_f64(_mm256_castpd256_pd128(mValue)); }
JPH_INLINE double GetY() const { return mF64[1]; }
JPH_INLINE double GetZ() const { return mF64[2]; }
#elif defined(JPH_USE_SSE)
JPH_INLINE double GetX() const { return _mm_cvtsd_f64(mValue.mLow); }
JPH_INLINE double GetY() const { return mF64[1]; }
JPH_INLINE double GetZ() const { return _mm_cvtsd_f64(mValue.mHigh); }
#elif defined(JPH_USE_NEON)
JPH_INLINE double GetX() const { return vgetq_lane_f64(mValue.val[0], 0); }
JPH_INLINE double GetY() const { return vgetq_lane_f64(mValue.val[0], 1); }
JPH_INLINE double GetZ() const { return vgetq_lane_f64(mValue.val[1], 0); }
#else
JPH_INLINE double GetX() const { return mF64[0]; }
JPH_INLINE double GetY() const { return mF64[1]; }
JPH_INLINE double GetZ() const { return mF64[2]; }
#endif
/// Set individual components
JPH_INLINE void SetX(double inX) { mF64[0] = inX; }
JPH_INLINE void SetY(double inY) { mF64[1] = inY; }
JPH_INLINE void SetZ(double inZ) { mF64[2] = mF64[3] = inZ; } // Assure Z and W are the same
/// Set all components
JPH_INLINE void Set(double inX, double inY, double inZ) { *this = DVec3(inX, inY, inZ); }
/// Get double component by index
JPH_INLINE double operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 3); return mF64[inCoordinate]; }
/// Set double component by index
JPH_INLINE void SetComponent(uint inCoordinate, double inValue) { JPH_ASSERT(inCoordinate < 3); mF64[inCoordinate] = inValue; mValue = sFixW(mValue); } // Assure Z and W are the same
/// Comparison
JPH_INLINE bool operator == (DVec3Arg inV2) const;
JPH_INLINE bool operator != (DVec3Arg inV2) const { return !(*this == inV2); }
/// Test if two vectors are close
JPH_INLINE bool IsClose(DVec3Arg inV2, double inMaxDistSq = 1.0e-24) const;
/// Test if vector is near zero
JPH_INLINE bool IsNearZero(double inMaxDistSq = 1.0e-24) const;
/// Test if vector is normalized
JPH_INLINE bool IsNormalized(double inTolerance = 1.0e-12) const;
/// Test if vector contains NaN elements
JPH_INLINE bool IsNaN() const;
/// Multiply two double vectors (component wise)
JPH_INLINE DVec3 operator * (DVec3Arg inV2) const;
/// Multiply vector with double
JPH_INLINE DVec3 operator * (double inV2) const;
/// Multiply vector with double
friend JPH_INLINE DVec3 operator * (double inV1, DVec3Arg inV2);
/// Divide vector by double
JPH_INLINE DVec3 operator / (double inV2) const;
/// Multiply vector with double
JPH_INLINE DVec3 & operator *= (double inV2);
/// Multiply vector with vector
JPH_INLINE DVec3 & operator *= (DVec3Arg inV2);
/// Divide vector by double
JPH_INLINE DVec3 & operator /= (double inV2);
/// Add two vectors (component wise)
JPH_INLINE DVec3 operator + (Vec3Arg inV2) const;
/// Add two double vectors (component wise)
JPH_INLINE DVec3 operator + (DVec3Arg inV2) const;
/// Add two vectors (component wise)
JPH_INLINE DVec3 & operator += (Vec3Arg inV2);
/// Add two double vectors (component wise)
JPH_INLINE DVec3 & operator += (DVec3Arg inV2);
/// Negate
JPH_INLINE DVec3 operator - () const;
/// Subtract two vectors (component wise)
JPH_INLINE DVec3 operator - (Vec3Arg inV2) const;
/// Subtract two double vectors (component wise)
JPH_INLINE DVec3 operator - (DVec3Arg inV2) const;
/// Subtract two vectors (component wise)
JPH_INLINE DVec3 & operator -= (Vec3Arg inV2);
/// Subtract two vectors (component wise)
JPH_INLINE DVec3 & operator -= (DVec3Arg inV2);
/// Divide (component wise)
JPH_INLINE DVec3 operator / (DVec3Arg inV2) const;
/// Return the absolute value of each of the components
JPH_INLINE DVec3 Abs() const;
/// Reciprocal vector (1 / value) for each of the components
JPH_INLINE DVec3 Reciprocal() const;
/// Cross product
JPH_INLINE DVec3 Cross(DVec3Arg inV2) const;
/// Dot product
JPH_INLINE double Dot(DVec3Arg inV2) const;
/// Squared length of vector
JPH_INLINE double LengthSq() const;
/// Length of vector
JPH_INLINE double Length() const;
/// Normalize vector
JPH_INLINE DVec3 Normalized() const;
/// Component wise square root
JPH_INLINE DVec3 Sqrt() const;
/// Get vector that contains the sign of each element (returns 1 if positive, -1 if negative)
JPH_INLINE DVec3 GetSign() const;
/// To String
friend ostream & operator << (ostream &inStream, DVec3Arg inV)
{
inStream << inV.mF64[0] << ", " << inV.mF64[1] << ", " << inV.mF64[2];
return inStream;
}
/// Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate div by 0
JPH_INLINE void CheckW() const;
/// Internal helper function that ensures that the Z component is replicated to the W component to prevent divisions by zero
static JPH_INLINE Type sFixW(TypeArg inValue);
/// Representations of true and false for boolean operations
inline static const double cTrue = BitCast<double>(~uint64(0));
inline static const double cFalse = 0.0;
union
{
Type mValue;
double mF64[4];
};
};
static_assert(std::is_trivial<DVec3>(), "Is supposed to be a trivial type!");
JPH_NAMESPACE_END
#include "DVec3.inl"