godot-module-template/engine/thirdparty/jolt_physics/Jolt/Geometry/RayCylinder.h

102 lines
3.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/FindRoot.h>
JPH_NAMESPACE_BEGIN
/// Tests a ray starting at inRayOrigin and extending infinitely in inRayDirection
/// against an infinite cylinder centered along the Y axis
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayDirection Direction of the ray. Does not need to be normalized.
/// @param inRayOrigin Origin of the ray. If the ray starts inside the cylinder, the returned fraction will be 0.
/// @param inCylinderRadius Radius of the infinite cylinder
JPH_INLINE float RayCylinder(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inCylinderRadius)
{
// Remove Y component of ray to see of ray intersects with infinite cylinder
UVec4 mask_y = UVec4(0, 0xffffffff, 0, 0);
Vec3 origin_xz = Vec3::sSelect(inRayOrigin, Vec3::sZero(), mask_y);
float origin_xz_len_sq = origin_xz.LengthSq();
float r_sq = Square(inCylinderRadius);
if (origin_xz_len_sq > r_sq)
{
// Ray starts outside of the infinite cylinder
// Solve: |RayOrigin_xz + fraction * RayDirection_xz|^2 = r^2 to find fraction
Vec3 direction_xz = Vec3::sSelect(inRayDirection, Vec3::sZero(), mask_y);
float a = direction_xz.LengthSq();
float b = 2.0f * origin_xz.Dot(direction_xz);
float c = origin_xz_len_sq - r_sq;
float fraction1, fraction2;
if (FindRoot(a, b, c, fraction1, fraction2) == 0)
return FLT_MAX; // No intersection with infinite cylinder
// Get fraction corresponding to the ray entering the circle
float fraction = min(fraction1, fraction2);
if (fraction >= 0.0f)
return fraction;
}
else
{
// Ray starts inside the infinite cylinder
return 0.0f;
}
// No collision
return FLT_MAX;
}
/// Test a ray against a cylinder centered around the origin with its axis along the Y axis and half height specified.
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayDirection Ray direction. Does not need to be normalized.
/// @param inRayOrigin Origin of the ray. If the ray starts inside the cylinder, the returned fraction will be 0.
/// @param inCylinderRadius Radius of the cylinder
/// @param inCylinderHalfHeight Distance from the origin to the top (or bottom) of the cylinder
JPH_INLINE float RayCylinder(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inCylinderHalfHeight, float inCylinderRadius)
{
// Test infinite cylinder
float fraction = RayCylinder(inRayOrigin, inRayDirection, inCylinderRadius);
if (fraction == FLT_MAX)
return FLT_MAX;
// If this hit is in the finite cylinder we have our fraction
if (abs(inRayOrigin.GetY() + fraction * inRayDirection.GetY()) <= inCylinderHalfHeight)
return fraction;
// Check if ray could hit the top or bottom plane of the cylinder
float direction_y = inRayDirection.GetY();
if (direction_y != 0.0f)
{
// Solving line equation: x = ray_origin + fraction * ray_direction
// and plane equation: plane_normal . x + plane_constant = 0
// fraction = (-plane_constant - plane_normal . ray_origin) / (plane_normal . ray_direction)
// when the ray_direction.y < 0:
// plane_constant = -cylinder_half_height, plane_normal = (0, 1, 0)
// else
// plane_constant = -cylinder_half_height, plane_normal = (0, -1, 0)
float origin_y = inRayOrigin.GetY();
float plane_fraction;
if (direction_y < 0.0f)
plane_fraction = (inCylinderHalfHeight - origin_y) / direction_y;
else
plane_fraction = -(inCylinderHalfHeight + origin_y) / direction_y;
// Check if the hit is in front of the ray
if (plane_fraction >= 0.0f)
{
// Test if this hit is inside the cylinder
Vec3 point = inRayOrigin + plane_fraction * inRayDirection;
float dist_sq = Square(point.GetX()) + Square(point.GetZ());
if (dist_sq <= Square(inCylinderRadius))
return plane_fraction;
}
}
// No collision
return FLT_MAX;
}
JPH_NAMESPACE_END