godot-module-template/engine/thirdparty/jolt_physics/Jolt/Geometry/Plane.h

102 lines
4.8 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
/// An infinite plane described by the formula X . Normal + Constant = 0.
class [[nodiscard]] Plane
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
Plane() = default;
explicit Plane(Vec4Arg inNormalAndConstant) : mNormalAndConstant(inNormalAndConstant) { }
Plane(Vec3Arg inNormal, float inConstant) : mNormalAndConstant(inNormal, inConstant) { }
/// Create from point and normal
static Plane sFromPointAndNormal(Vec3Arg inPoint, Vec3Arg inNormal) { return Plane(Vec4(inNormal, -inNormal.Dot(inPoint))); }
/// Create from point and normal, double precision version that more accurately calculates the plane constant
static Plane sFromPointAndNormal(DVec3Arg inPoint, Vec3Arg inNormal) { return Plane(Vec4(inNormal, -float(DVec3(inNormal).Dot(inPoint)))); }
/// Create from 3 counter clockwise points
static Plane sFromPointsCCW(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3) { return sFromPointAndNormal(inV1, (inV2 - inV1).Cross(inV3 - inV1).Normalized()); }
// Properties
Vec3 GetNormal() const { return Vec3(mNormalAndConstant); }
void SetNormal(Vec3Arg inNormal) { mNormalAndConstant = Vec4(inNormal, mNormalAndConstant.GetW()); }
float GetConstant() const { return mNormalAndConstant.GetW(); }
void SetConstant(float inConstant) { mNormalAndConstant.SetW(inConstant); }
/// Offset the plane (positive value means move it in the direction of the plane normal)
Plane Offset(float inDistance) const { return Plane(mNormalAndConstant - Vec4(Vec3::sZero(), inDistance)); }
/// Transform the plane by a matrix
inline Plane GetTransformed(Mat44Arg inTransform) const
{
Vec3 transformed_normal = inTransform.Multiply3x3(GetNormal());
return Plane(transformed_normal, GetConstant() - inTransform.GetTranslation().Dot(transformed_normal));
}
/// Scale the plane, can handle non-uniform and negative scaling
inline Plane Scaled(Vec3Arg inScale) const
{
Vec3 scaled_normal = GetNormal() / inScale;
float scaled_normal_length = scaled_normal.Length();
return Plane(scaled_normal / scaled_normal_length, GetConstant() / scaled_normal_length);
}
/// Distance point to plane
float SignedDistance(Vec3Arg inPoint) const { return inPoint.Dot(GetNormal()) + GetConstant(); }
/// Project inPoint onto the plane
Vec3 ProjectPointOnPlane(Vec3Arg inPoint) const { return inPoint - GetNormal() * SignedDistance(inPoint); }
/// Returns intersection point between 3 planes
static bool sIntersectPlanes(const Plane &inP1, const Plane &inP2, const Plane &inP3, Vec3 &outPoint)
{
// We solve the equation:
// |ax, ay, az, aw| | x | | 0 |
// |bx, by, bz, bw| * | y | = | 0 |
// |cx, cy, cz, cw| | z | | 0 |
// | 0, 0, 0, 1| | 1 | | 1 |
// Where normal of plane 1 = (ax, ay, az), plane constant of 1 = aw, normal of plane 2 = (bx, by, bz) etc.
// This involves inverting the matrix and multiplying it with [0, 0, 0, 1]
// Fetch the normals and plane constants for the three planes
Vec4 a = inP1.mNormalAndConstant;
Vec4 b = inP2.mNormalAndConstant;
Vec4 c = inP3.mNormalAndConstant;
// Result is a vector that we have to divide by:
float denominator = Vec3(a).Dot(Vec3(b).Cross(Vec3(c)));
if (denominator == 0.0f)
return false;
// The numerator is:
// [aw*(bz*cy-by*cz)+ay*(bw*cz-bz*cw)+az*(by*cw-bw*cy)]
// [aw*(bx*cz-bz*cx)+ax*(bz*cw-bw*cz)+az*(bw*cx-bx*cw)]
// [aw*(by*cx-bx*cy)+ax*(bw*cy-by*cw)+ay*(bx*cw-bw*cx)]
Vec4 numerator =
a.SplatW() * (b.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_UNUSED>())
+ a.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_X, SWIZZLE_UNUSED>() * (b.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Y, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Y, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_UNUSED>())
+ a.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_UNUSED>() * (b.Swizzle<SWIZZLE_Y, SWIZZLE_W, SWIZZLE_X, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_W, SWIZZLE_X, SWIZZLE_W, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_W, SWIZZLE_X, SWIZZLE_W, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Y, SWIZZLE_W, SWIZZLE_X, SWIZZLE_UNUSED>());
outPoint = Vec3(numerator) / denominator;
return true;
}
private:
#ifdef JPH_OBJECT_STREAM
friend void CreateRTTIPlane(class RTTI &); // For JPH_IMPLEMENT_SERIALIZABLE_OUTSIDE_CLASS
#endif
Vec4 mNormalAndConstant; ///< XYZ = normal, W = constant, plane: x . normal + constant = 0
};
JPH_NAMESPACE_END