946 lines
30 KiB
C++
946 lines
30 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Core/NonCopyable.h>
|
|
#include <Jolt/Geometry/ClosestPoint.h>
|
|
#include <Jolt/Geometry/ConvexSupport.h>
|
|
|
|
//#define JPH_GJK_DEBUG
|
|
#ifdef JPH_GJK_DEBUG
|
|
#include <Jolt/Core/StringTools.h>
|
|
#include <Jolt/Renderer/DebugRenderer.h>
|
|
#endif
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Convex vs convex collision detection
|
|
/// Based on: A Fast and Robust GJK Implementation for Collision Detection of Convex Objects - Gino van den Bergen
|
|
class GJKClosestPoint : public NonCopyable
|
|
{
|
|
private:
|
|
/// Get new closest point to origin given simplex mY of mNumPoints points
|
|
///
|
|
/// @param inPrevVLenSq Length of |outV|^2 from the previous iteration, used as a maximum value when selecting a new closest point.
|
|
/// @param outV Closest point
|
|
/// @param outVLenSq |outV|^2
|
|
/// @param outSet Set of points that form the new simplex closest to the origin (bit 1 = mY[0], bit 2 = mY[1], ...)
|
|
///
|
|
/// If LastPointPartOfClosestFeature is true then the last point added will be assumed to be part of the closest feature and the function will do less work.
|
|
///
|
|
/// @return True if new closest point was found.
|
|
/// False if the function failed, in this case the output variables are not modified
|
|
template <bool LastPointPartOfClosestFeature>
|
|
bool GetClosest(float inPrevVLenSq, Vec3 &outV, float &outVLenSq, uint32 &outSet) const
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
Trace("y[%d] = [%s], |y[%d]| = %g", i, ConvertToString(mY[i]).c_str(), i, (double)mY[i].Length());
|
|
#endif
|
|
|
|
uint32 set;
|
|
Vec3 v;
|
|
|
|
switch (mNumPoints)
|
|
{
|
|
case 1:
|
|
// Single point
|
|
set = 0b0001;
|
|
v = mY[0];
|
|
break;
|
|
|
|
case 2:
|
|
// Line segment
|
|
v = ClosestPoint::GetClosestPointOnLine(mY[0], mY[1], set);
|
|
break;
|
|
|
|
case 3:
|
|
// Triangle
|
|
v = ClosestPoint::GetClosestPointOnTriangle<LastPointPartOfClosestFeature>(mY[0], mY[1], mY[2], set);
|
|
break;
|
|
|
|
case 4:
|
|
// Tetrahedron
|
|
v = ClosestPoint::GetClosestPointOnTetrahedron<LastPointPartOfClosestFeature>(mY[0], mY[1], mY[2], mY[3], set);
|
|
break;
|
|
|
|
default:
|
|
JPH_ASSERT(false);
|
|
return false;
|
|
}
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("GetClosest: set = 0b%s, v = [%s], |v| = %g", NibbleToBinary(set), ConvertToString(v).c_str(), (double)v.Length());
|
|
#endif
|
|
|
|
float v_len_sq = v.LengthSq();
|
|
if (v_len_sq < inPrevVLenSq) // Note, comparison order important: If v_len_sq is NaN then this expression will be false so we will return false
|
|
{
|
|
// Return closest point
|
|
outV = v;
|
|
outVLenSq = v_len_sq;
|
|
outSet = set;
|
|
return true;
|
|
}
|
|
|
|
// No better match found
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("New closer point is further away, failed to converge");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// Get max(|Y_0|^2 .. |Y_n|^2)
|
|
float GetMaxYLengthSq() const
|
|
{
|
|
float y_len_sq = mY[0].LengthSq();
|
|
for (int i = 1; i < mNumPoints; ++i)
|
|
y_len_sq = max(y_len_sq, mY[i].LengthSq());
|
|
return y_len_sq;
|
|
}
|
|
|
|
// Remove points that are not in the set, only updates mY
|
|
void UpdatePointSetY(uint32 inSet)
|
|
{
|
|
int num_points = 0;
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
if ((inSet & (1 << i)) != 0)
|
|
{
|
|
mY[num_points] = mY[i];
|
|
++num_points;
|
|
}
|
|
mNumPoints = num_points;
|
|
}
|
|
|
|
// Remove points that are not in the set, only updates mP
|
|
void UpdatePointSetP(uint32 inSet)
|
|
{
|
|
int num_points = 0;
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
if ((inSet & (1 << i)) != 0)
|
|
{
|
|
mP[num_points] = mP[i];
|
|
++num_points;
|
|
}
|
|
mNumPoints = num_points;
|
|
}
|
|
|
|
// Remove points that are not in the set, only updates mP and mQ
|
|
void UpdatePointSetPQ(uint32 inSet)
|
|
{
|
|
int num_points = 0;
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
if ((inSet & (1 << i)) != 0)
|
|
{
|
|
mP[num_points] = mP[i];
|
|
mQ[num_points] = mQ[i];
|
|
++num_points;
|
|
}
|
|
mNumPoints = num_points;
|
|
}
|
|
|
|
// Remove points that are not in the set, updates mY, mP and mQ
|
|
void UpdatePointSetYPQ(uint32 inSet)
|
|
{
|
|
int num_points = 0;
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
if ((inSet & (1 << i)) != 0)
|
|
{
|
|
mY[num_points] = mY[i];
|
|
mP[num_points] = mP[i];
|
|
mQ[num_points] = mQ[i];
|
|
++num_points;
|
|
}
|
|
mNumPoints = num_points;
|
|
}
|
|
|
|
// Calculate closest points on A and B
|
|
void CalculatePointAAndB(Vec3 &outPointA, Vec3 &outPointB) const
|
|
{
|
|
switch (mNumPoints)
|
|
{
|
|
case 1:
|
|
outPointA = mP[0];
|
|
outPointB = mQ[0];
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
float u, v;
|
|
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], u, v);
|
|
outPointA = u * mP[0] + v * mP[1];
|
|
outPointB = u * mQ[0] + v * mQ[1];
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
{
|
|
float u, v, w;
|
|
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], mY[2], u, v, w);
|
|
outPointA = u * mP[0] + v * mP[1] + w * mP[2];
|
|
outPointB = u * mQ[0] + v * mQ[1] + w * mQ[2];
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
#ifdef JPH_DEBUG
|
|
memset(&outPointA, 0xcd, sizeof(outPointA));
|
|
memset(&outPointB, 0xcd, sizeof(outPointB));
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// Test if inA and inB intersect
|
|
///
|
|
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
|
|
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
|
|
/// @param inTolerance Minimal distance between objects when the objects are considered to be colliding
|
|
/// @param ioV is used as initial separating axis (provide a zero vector if you don't know yet)
|
|
///
|
|
/// @return True if they intersect (in which case ioV = (0, 0, 0)).
|
|
/// False if they don't intersect in which case ioV is a separating axis in the direction from A to B (magnitude is meaningless)
|
|
template <typename A, typename B>
|
|
bool Intersects(const A &inA, const B &inB, float inTolerance, Vec3 &ioV)
|
|
{
|
|
float tolerance_sq = Square(inTolerance);
|
|
|
|
// Reset state
|
|
mNumPoints = 0;
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
for (int i = 0; i < 4; ++i)
|
|
mY[i] = Vec3::sZero();
|
|
#endif
|
|
|
|
// Previous length^2 of v
|
|
float prev_v_len_sq = FLT_MAX;
|
|
|
|
for (;;)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v = [%s], num_points = %d", ConvertToString(ioV).c_str(), mNumPoints);
|
|
#endif
|
|
|
|
// Get support points for shape A and B in the direction of v
|
|
Vec3 p = inA.GetSupport(ioV);
|
|
Vec3 q = inB.GetSupport(-ioV);
|
|
|
|
// Get support point of the minkowski sum A - B of v
|
|
Vec3 w = p - q;
|
|
|
|
// If the support point sA-B(v) is in the opposite direction as v, then we have found a separating axis and there is no intersection
|
|
if (ioV.Dot(w) < 0.0f)
|
|
{
|
|
// Separating axis found
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Separating axis");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// Store the point for later use
|
|
mY[mNumPoints] = w;
|
|
++mNumPoints;
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("w = [%s]", ConvertToString(w).c_str());
|
|
#endif
|
|
|
|
// Determine the new closest point
|
|
float v_len_sq; // Length^2 of v
|
|
uint32 set; // Set of points that form the new simplex
|
|
if (!GetClosest<true>(prev_v_len_sq, ioV, v_len_sq, set))
|
|
return false;
|
|
|
|
// If there are 4 points, the origin is inside the tetrahedron and we're done
|
|
if (set == 0xf)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Full simplex");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
return true;
|
|
}
|
|
|
|
// If v is very close to zero, we consider this a collision
|
|
if (v_len_sq <= tolerance_sq)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Distance zero");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
return true;
|
|
}
|
|
|
|
// If v is very small compared to the length of y, we also consider this a collision
|
|
if (v_len_sq <= FLT_EPSILON * GetMaxYLengthSq())
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Machine precision reached");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
return true;
|
|
}
|
|
|
|
// The next separation axis to test is the negative of the closest point of the Minkowski sum to the origin
|
|
// Note: This must be done before terminating as converged since the separating axis is -v
|
|
ioV = -ioV;
|
|
|
|
// If the squared length of v is not changing enough, we've converged and there is no collision
|
|
JPH_ASSERT(prev_v_len_sq >= v_len_sq);
|
|
if (prev_v_len_sq - v_len_sq <= FLT_EPSILON * prev_v_len_sq)
|
|
{
|
|
// v is a separating axis
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Converged");
|
|
#endif
|
|
return false;
|
|
}
|
|
prev_v_len_sq = v_len_sq;
|
|
|
|
// Update the points of the simplex
|
|
UpdatePointSetY(set);
|
|
}
|
|
}
|
|
|
|
/// Get closest points between inA and inB
|
|
///
|
|
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
|
|
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
|
|
/// @param inTolerance The minimal distance between A and B before the objects are considered colliding and processing is terminated.
|
|
/// @param inMaxDistSq The maximum squared distance between A and B before the objects are considered infinitely far away and processing is terminated.
|
|
/// @param ioV Initial guess for the separating axis. Start with any non-zero vector if you don't know.
|
|
/// If return value is 0, ioV = (0, 0, 0).
|
|
/// If the return value is bigger than 0 but smaller than FLT_MAX, ioV will be the separating axis in the direction from A to B and its length the squared distance between A and B.
|
|
/// If the return value is FLT_MAX, ioV will be the separating axis in the direction from A to B and the magnitude of the vector is meaningless.
|
|
/// @param outPointA , outPointB
|
|
/// If the return value is 0 the points are invalid.
|
|
/// If the return value is bigger than 0 but smaller than FLT_MAX these will contain the closest point on A and B.
|
|
/// If the return value is FLT_MAX the points are invalid.
|
|
///
|
|
/// @return The squared distance between A and B or FLT_MAX when they are further away than inMaxDistSq.
|
|
template <typename A, typename B>
|
|
float GetClosestPoints(const A &inA, const B &inB, float inTolerance, float inMaxDistSq, Vec3 &ioV, Vec3 &outPointA, Vec3 &outPointB)
|
|
{
|
|
float tolerance_sq = Square(inTolerance);
|
|
|
|
// Reset state
|
|
mNumPoints = 0;
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
// Generate the hull of the Minkowski difference for visualization
|
|
MinkowskiDifference diff(inA, inB);
|
|
mGeometry = DebugRenderer::sInstance->CreateTriangleGeometryForConvex([&diff](Vec3Arg inDirection) { return diff.GetSupport(inDirection); });
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
mY[i] = Vec3::sZero();
|
|
mP[i] = Vec3::sZero();
|
|
mQ[i] = Vec3::sZero();
|
|
}
|
|
#endif
|
|
|
|
// Length^2 of v
|
|
float v_len_sq = ioV.LengthSq();
|
|
|
|
// Previous length^2 of v
|
|
float prev_v_len_sq = FLT_MAX;
|
|
|
|
for (;;)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v = [%s], num_points = %d", ConvertToString(ioV).c_str(), mNumPoints);
|
|
#endif
|
|
|
|
// Get support points for shape A and B in the direction of v
|
|
Vec3 p = inA.GetSupport(ioV);
|
|
Vec3 q = inB.GetSupport(-ioV);
|
|
|
|
// Get support point of the minkowski sum A - B of v
|
|
Vec3 w = p - q;
|
|
|
|
float dot = ioV.Dot(w);
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
// Draw -ioV to show the closest point to the origin from the previous simplex
|
|
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset - ioV, Color::sOrange, 0.05f);
|
|
|
|
// Draw ioV to show where we're probing next
|
|
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset + ioV, Color::sCyan, 0.05f);
|
|
|
|
// Draw w, the support point
|
|
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset + w, Color::sGreen, 0.05f);
|
|
DebugRenderer::sInstance->DrawMarker(mOffset + w, Color::sGreen, 1.0f);
|
|
|
|
// Draw the simplex and the Minkowski difference around it
|
|
DrawState();
|
|
#endif
|
|
|
|
// Test if we have a separation of more than inMaxDistSq, in which case we terminate early
|
|
if (dot < 0.0f && dot * dot > v_len_sq * inMaxDistSq)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Distance bigger than max");
|
|
#endif
|
|
#ifdef JPH_DEBUG
|
|
memset(&outPointA, 0xcd, sizeof(outPointA));
|
|
memset(&outPointB, 0xcd, sizeof(outPointB));
|
|
#endif
|
|
return FLT_MAX;
|
|
}
|
|
|
|
// Store the point for later use
|
|
mY[mNumPoints] = w;
|
|
mP[mNumPoints] = p;
|
|
mQ[mNumPoints] = q;
|
|
++mNumPoints;
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("w = [%s]", ConvertToString(w).c_str());
|
|
#endif
|
|
|
|
uint32 set;
|
|
if (!GetClosest<true>(prev_v_len_sq, ioV, v_len_sq, set))
|
|
{
|
|
--mNumPoints; // Undo add last point
|
|
break;
|
|
}
|
|
|
|
// If there are 4 points, the origin is inside the tetrahedron and we're done
|
|
if (set == 0xf)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Full simplex");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
v_len_sq = 0.0f;
|
|
break;
|
|
}
|
|
|
|
// Update the points of the simplex
|
|
UpdatePointSetYPQ(set);
|
|
|
|
// If v is very close to zero, we consider this a collision
|
|
if (v_len_sq <= tolerance_sq)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Distance zero");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
v_len_sq = 0.0f;
|
|
break;
|
|
}
|
|
|
|
// If v is very small compared to the length of y, we also consider this a collision
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Check v small compared to y: %g <= %g", (double)v_len_sq, (double)(FLT_EPSILON * GetMaxYLengthSq()));
|
|
#endif
|
|
if (v_len_sq <= FLT_EPSILON * GetMaxYLengthSq())
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Machine precision reached");
|
|
#endif
|
|
ioV = Vec3::sZero();
|
|
v_len_sq = 0.0f;
|
|
break;
|
|
}
|
|
|
|
// The next separation axis to test is the negative of the closest point of the Minkowski sum to the origin
|
|
// Note: This must be done before terminating as converged since the separating axis is -v
|
|
ioV = -ioV;
|
|
|
|
// If the squared length of v is not changing enough, we've converged and there is no collision
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Check v not changing enough: %g <= %g", (double)(prev_v_len_sq - v_len_sq), (double)(FLT_EPSILON * prev_v_len_sq));
|
|
#endif
|
|
JPH_ASSERT(prev_v_len_sq >= v_len_sq);
|
|
if (prev_v_len_sq - v_len_sq <= FLT_EPSILON * prev_v_len_sq)
|
|
{
|
|
// v is a separating axis
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Converged");
|
|
#endif
|
|
break;
|
|
}
|
|
prev_v_len_sq = v_len_sq;
|
|
}
|
|
|
|
// Get the closest points
|
|
CalculatePointAAndB(outPointA, outPointB);
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Return: v = [%s], |v| = %g", ConvertToString(ioV).c_str(), (double)ioV.Length());
|
|
|
|
// Draw -ioV to show the closest point to the origin from the previous simplex
|
|
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset - ioV, Color::sOrange, 0.05f);
|
|
|
|
// Draw the closest points
|
|
DebugRenderer::sInstance->DrawMarker(mOffset + outPointA, Color::sGreen, 1.0f);
|
|
DebugRenderer::sInstance->DrawMarker(mOffset + outPointB, Color::sPurple, 1.0f);
|
|
|
|
// Draw the simplex and the Minkowski difference around it
|
|
DrawState();
|
|
#endif
|
|
|
|
JPH_ASSERT(ioV.LengthSq() == v_len_sq);
|
|
return v_len_sq;
|
|
}
|
|
|
|
/// Get the resulting simplex after the GetClosestPoints algorithm finishes.
|
|
/// If it returned a squared distance of 0, the origin will be contained in the simplex.
|
|
void GetClosestPointsSimplex(Vec3 *outY, Vec3 *outP, Vec3 *outQ, uint &outNumPoints) const
|
|
{
|
|
uint size = sizeof(Vec3) * mNumPoints;
|
|
memcpy(outY, mY, size);
|
|
memcpy(outP, mP, size);
|
|
memcpy(outQ, mQ, size);
|
|
outNumPoints = mNumPoints;
|
|
}
|
|
|
|
/// Test if a ray inRayOrigin + lambda * inRayDirection for lambda e [0, ioLambda> intersects inA
|
|
///
|
|
/// Code based upon: Ray Casting against General Convex Objects with Application to Continuous Collision Detection - Gino van den Bergen
|
|
///
|
|
/// @param inRayOrigin Origin of the ray
|
|
/// @param inRayDirection Direction of the ray (ioLambda * inDirection determines length)
|
|
/// @param inTolerance The minimal distance between the ray and A before it is considered colliding
|
|
/// @param inA A convex object that has the GetSupport(Vec3) function
|
|
/// @param ioLambda The max fraction along the ray, on output updated with the actual collision fraction.
|
|
///
|
|
/// @return true if a hit was found, ioLambda is the solution for lambda.
|
|
template <typename A>
|
|
bool CastRay(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inTolerance, const A &inA, float &ioLambda)
|
|
{
|
|
float tolerance_sq = Square(inTolerance);
|
|
|
|
// Reset state
|
|
mNumPoints = 0;
|
|
|
|
float lambda = 0.0f;
|
|
Vec3 x = inRayOrigin;
|
|
Vec3 v = x - inA.GetSupport(Vec3::sZero());
|
|
float v_len_sq = FLT_MAX;
|
|
bool allow_restart = false;
|
|
|
|
for (;;)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v = [%s], num_points = %d", ConvertToString(v).c_str(), mNumPoints);
|
|
#endif
|
|
|
|
// Get new support point
|
|
Vec3 p = inA.GetSupport(v);
|
|
Vec3 w = x - p;
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("w = [%s]", ConvertToString(w).c_str());
|
|
#endif
|
|
|
|
float v_dot_w = v.Dot(w);
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v . w = %g", (double)v_dot_w);
|
|
#endif
|
|
if (v_dot_w > 0.0f)
|
|
{
|
|
// If ray and normal are in the same direction, we've passed A and there's no collision
|
|
float v_dot_r = v.Dot(inRayDirection);
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v . r = %g", (double)v_dot_r);
|
|
#endif
|
|
if (v_dot_r >= 0.0f)
|
|
return false;
|
|
|
|
// Update the lower bound for lambda
|
|
float delta = v_dot_w / v_dot_r;
|
|
float old_lambda = lambda;
|
|
lambda -= delta;
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("lambda = %g, delta = %g", (double)lambda, (double)delta);
|
|
#endif
|
|
|
|
// If lambda didn't change, we cannot converge any further and we assume a hit
|
|
if (old_lambda == lambda)
|
|
break;
|
|
|
|
// If lambda is bigger or equal than max, we don't have a hit
|
|
if (lambda >= ioLambda)
|
|
return false;
|
|
|
|
// Update x to new closest point on the ray
|
|
x = inRayOrigin + lambda * inRayDirection;
|
|
|
|
// We've shifted x, so reset v_len_sq so that it is not used as early out for GetClosest
|
|
v_len_sq = FLT_MAX;
|
|
|
|
// We allow rebuilding the simplex once after x changes because the simplex was built
|
|
// for another x and numerical round off builds up as you keep adding points to an
|
|
// existing simplex
|
|
allow_restart = true;
|
|
}
|
|
|
|
// Add p to set P: P = P U {p}
|
|
mP[mNumPoints] = p;
|
|
++mNumPoints;
|
|
|
|
// Calculate Y = {x} - P
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
mY[i] = x - mP[i];
|
|
|
|
// Determine the new closest point from Y to origin
|
|
uint32 set; // Set of points that form the new simplex
|
|
if (!GetClosest<false>(v_len_sq, v, v_len_sq, set))
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Failed to converge");
|
|
#endif
|
|
|
|
// Only allow 1 restart, if we still can't get a closest point
|
|
// we're so close that we return this as a hit
|
|
if (!allow_restart)
|
|
break;
|
|
|
|
// If we fail to converge, we start again with the last point as simplex
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Restarting");
|
|
#endif
|
|
allow_restart = false;
|
|
mP[0] = p;
|
|
mNumPoints = 1;
|
|
v = x - p;
|
|
v_len_sq = FLT_MAX;
|
|
continue;
|
|
}
|
|
else if (set == 0xf)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Full simplex");
|
|
#endif
|
|
|
|
// We're inside the tetrahedron, we have a hit (verify that length of v is 0)
|
|
JPH_ASSERT(v_len_sq == 0.0f);
|
|
break;
|
|
}
|
|
|
|
// Update the points P to form the new simplex
|
|
// Note: We're not updating Y as Y will shift with x so we have to calculate it every iteration
|
|
UpdatePointSetP(set);
|
|
|
|
// Check if x is close enough to inA
|
|
if (v_len_sq <= tolerance_sq)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Converged");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Store hit fraction
|
|
ioLambda = lambda;
|
|
return true;
|
|
}
|
|
|
|
/// Test if a cast shape inA moving from inStart to lambda * inStart.GetTranslation() + inDirection where lambda e [0, ioLambda> intersects inB
|
|
///
|
|
/// @param inStart Start position and orientation of the convex object
|
|
/// @param inDirection Direction of the sweep (ioLambda * inDirection determines length)
|
|
/// @param inTolerance The minimal distance between A and B before they are considered colliding
|
|
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
|
|
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
|
|
/// @param ioLambda The max fraction along the sweep, on output updated with the actual collision fraction.
|
|
///
|
|
/// @return true if a hit was found, ioLambda is the solution for lambda.
|
|
template <typename A, typename B>
|
|
bool CastShape(Mat44Arg inStart, Vec3Arg inDirection, float inTolerance, const A &inA, const B &inB, float &ioLambda)
|
|
{
|
|
// Transform the shape to be cast to the starting position
|
|
TransformedConvexObject transformed_a(inStart, inA);
|
|
|
|
// Calculate the minkowski difference inB - inA
|
|
// inA is moving, so we need to add the back side of inB to the front side of inA
|
|
MinkowskiDifference difference(inB, transformed_a);
|
|
|
|
// Do a raycast against the Minkowski difference
|
|
return CastRay(Vec3::sZero(), inDirection, inTolerance, difference, ioLambda);
|
|
}
|
|
|
|
/// Test if a cast shape inA moving from inStart to lambda * inStart.GetTranslation() + inDirection where lambda e [0, ioLambda> intersects inB
|
|
///
|
|
/// @param inStart Start position and orientation of the convex object
|
|
/// @param inDirection Direction of the sweep (ioLambda * inDirection determines length)
|
|
/// @param inTolerance The minimal distance between A and B before they are considered colliding
|
|
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
|
|
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
|
|
/// @param inConvexRadiusA The convex radius of A, this will be added on all sides to pad A.
|
|
/// @param inConvexRadiusB The convex radius of B, this will be added on all sides to pad B.
|
|
/// @param ioLambda The max fraction along the sweep, on output updated with the actual collision fraction.
|
|
/// @param outPointA is the contact point on A (if outSeparatingAxis is near zero, this may not be not the deepest point)
|
|
/// @param outPointB is the contact point on B (if outSeparatingAxis is near zero, this may not be not the deepest point)
|
|
/// @param outSeparatingAxis On return this will contain a vector that points from A to B along the smallest distance of separation.
|
|
/// The length of this vector indicates the separation of A and B without their convex radius.
|
|
/// If it is near zero, the direction may not be accurate as the bodies may overlap when lambda = 0.
|
|
///
|
|
/// @return true if a hit was found, ioLambda is the solution for lambda and outPoint and outSeparatingAxis are valid.
|
|
template <typename A, typename B>
|
|
bool CastShape(Mat44Arg inStart, Vec3Arg inDirection, float inTolerance, const A &inA, const B &inB, float inConvexRadiusA, float inConvexRadiusB, float &ioLambda, Vec3 &outPointA, Vec3 &outPointB, Vec3 &outSeparatingAxis)
|
|
{
|
|
float tolerance_sq = Square(inTolerance);
|
|
|
|
// Calculate how close A and B (without their convex radius) need to be to each other in order for us to consider this a collision
|
|
float sum_convex_radius = inConvexRadiusA + inConvexRadiusB;
|
|
|
|
// Transform the shape to be cast to the starting position
|
|
TransformedConvexObject transformed_a(inStart, inA);
|
|
|
|
// Reset state
|
|
mNumPoints = 0;
|
|
|
|
float lambda = 0.0f;
|
|
Vec3 x = Vec3::sZero(); // Since A is already transformed we can start the cast from zero
|
|
Vec3 v = -inB.GetSupport(Vec3::sZero()) + transformed_a.GetSupport(Vec3::sZero()); // See CastRay: v = x - inA.GetSupport(Vec3::sZero()) where inA is the Minkowski difference inB - transformed_a (see CastShape above) and x is zero
|
|
float v_len_sq = FLT_MAX;
|
|
bool allow_restart = false;
|
|
|
|
// Keeps track of separating axis of the previous iteration.
|
|
// Initialized at zero as we don't know if our first v is actually a separating axis.
|
|
Vec3 prev_v = Vec3::sZero();
|
|
|
|
for (;;)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v = [%s], num_points = %d", ConvertToString(v).c_str(), mNumPoints);
|
|
#endif
|
|
|
|
// Calculate the minkowski difference inB - inA
|
|
// inA is moving, so we need to add the back side of inB to the front side of inA
|
|
// Keep the support points on A and B separate so that in the end we can calculate a contact point
|
|
Vec3 p = transformed_a.GetSupport(-v);
|
|
Vec3 q = inB.GetSupport(v);
|
|
Vec3 w = x - (q - p);
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("w = [%s]", ConvertToString(w).c_str());
|
|
#endif
|
|
|
|
// Difference from article to this code:
|
|
// We did not include the convex radius in p and q in order to be able to calculate a good separating axis at the end of the algorithm.
|
|
// However when moving forward along inDirection we do need to take this into account so that we keep A and B separated by the sum of their convex radii.
|
|
// From p we have to subtract: inConvexRadiusA * v / |v|
|
|
// To q we have to add: inConvexRadiusB * v / |v|
|
|
// This means that to w we have to add: -(inConvexRadiusA + inConvexRadiusB) * v / |v|
|
|
// So to v . w we have to add: v . (-(inConvexRadiusA + inConvexRadiusB) * v / |v|) = -(inConvexRadiusA + inConvexRadiusB) * |v|
|
|
float v_dot_w = v.Dot(w) - sum_convex_radius * v.Length();
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v . w = %g", (double)v_dot_w);
|
|
#endif
|
|
if (v_dot_w > 0.0f)
|
|
{
|
|
// If ray and normal are in the same direction, we've passed A and there's no collision
|
|
float v_dot_r = v.Dot(inDirection);
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("v . r = %g", (double)v_dot_r);
|
|
#endif
|
|
if (v_dot_r >= 0.0f)
|
|
return false;
|
|
|
|
// Update the lower bound for lambda
|
|
float delta = v_dot_w / v_dot_r;
|
|
float old_lambda = lambda;
|
|
lambda -= delta;
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("lambda = %g, delta = %g", (double)lambda, (double)delta);
|
|
#endif
|
|
|
|
// If lambda didn't change, we cannot converge any further and we assume a hit
|
|
if (old_lambda == lambda)
|
|
break;
|
|
|
|
// If lambda is bigger or equal than max, we don't have a hit
|
|
if (lambda >= ioLambda)
|
|
return false;
|
|
|
|
// Update x to new closest point on the ray
|
|
x = lambda * inDirection;
|
|
|
|
// We've shifted x, so reset v_len_sq so that it is not used as early out when GetClosest returns false
|
|
v_len_sq = FLT_MAX;
|
|
|
|
// Now that we've moved, we know that A and B are not intersecting at lambda = 0, so we can update our tolerance to stop iterating
|
|
// as soon as A and B are inConvexRadiusA + inConvexRadiusB apart
|
|
tolerance_sq = Square(inTolerance + sum_convex_radius);
|
|
|
|
// We allow rebuilding the simplex once after x changes because the simplex was built
|
|
// for another x and numerical round off builds up as you keep adding points to an
|
|
// existing simplex
|
|
allow_restart = true;
|
|
}
|
|
|
|
// Add p to set P, q to set Q: P = P U {p}, Q = Q U {q}
|
|
mP[mNumPoints] = p;
|
|
mQ[mNumPoints] = q;
|
|
++mNumPoints;
|
|
|
|
// Calculate Y = {x} - (Q - P)
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
mY[i] = x - (mQ[i] - mP[i]);
|
|
|
|
// Determine the new closest point from Y to origin
|
|
uint32 set; // Set of points that form the new simplex
|
|
if (!GetClosest<false>(v_len_sq, v, v_len_sq, set))
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Failed to converge");
|
|
#endif
|
|
|
|
// Only allow 1 restart, if we still can't get a closest point
|
|
// we're so close that we return this as a hit
|
|
if (!allow_restart)
|
|
break;
|
|
|
|
// If we fail to converge, we start again with the last point as simplex
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Restarting");
|
|
#endif
|
|
allow_restart = false;
|
|
mP[0] = p;
|
|
mQ[0] = q;
|
|
mNumPoints = 1;
|
|
v = x - q;
|
|
v_len_sq = FLT_MAX;
|
|
continue;
|
|
}
|
|
else if (set == 0xf)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Full simplex");
|
|
#endif
|
|
|
|
// We're inside the tetrahedron, we have a hit (verify that length of v is 0)
|
|
JPH_ASSERT(v_len_sq == 0.0f);
|
|
break;
|
|
}
|
|
|
|
// Update the points P and Q to form the new simplex
|
|
// Note: We're not updating Y as Y will shift with x so we have to calculate it every iteration
|
|
UpdatePointSetPQ(set);
|
|
|
|
// Check if A and B are touching according to our tolerance
|
|
if (v_len_sq <= tolerance_sq)
|
|
{
|
|
#ifdef JPH_GJK_DEBUG
|
|
Trace("Converged");
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
// Store our v to return as separating axis
|
|
prev_v = v;
|
|
}
|
|
|
|
// Calculate Y = {x} - (Q - P) again so we can calculate the contact points
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
mY[i] = x - (mQ[i] - mP[i]);
|
|
|
|
// Calculate the offset we need to apply to A and B to correct for the convex radius
|
|
Vec3 normalized_v = v.NormalizedOr(Vec3::sZero());
|
|
Vec3 convex_radius_a = inConvexRadiusA * normalized_v;
|
|
Vec3 convex_radius_b = inConvexRadiusB * normalized_v;
|
|
|
|
// Get the contact point
|
|
// Note that A and B will coincide when lambda > 0. In this case we calculate only B as it is more accurate as it contains less terms.
|
|
switch (mNumPoints)
|
|
{
|
|
case 1:
|
|
outPointB = mQ[0] + convex_radius_b;
|
|
outPointA = lambda > 0.0f? outPointB : mP[0] - convex_radius_a;
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
float bu, bv;
|
|
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], bu, bv);
|
|
outPointB = bu * mQ[0] + bv * mQ[1] + convex_radius_b;
|
|
outPointA = lambda > 0.0f? outPointB : bu * mP[0] + bv * mP[1] - convex_radius_a;
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
case 4: // A full simplex, we can't properly determine a contact point! As contact point we take the closest point of the previous iteration.
|
|
{
|
|
float bu, bv, bw;
|
|
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], mY[2], bu, bv, bw);
|
|
outPointB = bu * mQ[0] + bv * mQ[1] + bw * mQ[2] + convex_radius_b;
|
|
outPointA = lambda > 0.0f? outPointB : bu * mP[0] + bv * mP[1] + bw * mP[2] - convex_radius_a;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Store separating axis, in case we have a convex radius we can just return v,
|
|
// otherwise v will be very small and we resort to returning previous v as an approximation.
|
|
outSeparatingAxis = sum_convex_radius > 0.0f? -v : -prev_v;
|
|
|
|
// Store hit fraction
|
|
ioLambda = lambda;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
#ifdef JPH_GJK_DEBUG
|
|
/// Draw state of algorithm
|
|
void DrawState()
|
|
{
|
|
RMat44 origin = RMat44::sTranslation(mOffset);
|
|
|
|
// Draw origin
|
|
DebugRenderer::sInstance->DrawCoordinateSystem(origin, 1.0f);
|
|
|
|
// Draw the hull
|
|
DebugRenderer::sInstance->DrawGeometry(origin, mGeometry->mBounds.Transformed(origin), mGeometry->mBounds.GetExtent().LengthSq(), Color::sYellow, mGeometry);
|
|
|
|
// Draw Y
|
|
for (int i = 0; i < mNumPoints; ++i)
|
|
{
|
|
// Draw support point
|
|
RVec3 y_i = origin * mY[i];
|
|
DebugRenderer::sInstance->DrawMarker(y_i, Color::sRed, 1.0f);
|
|
for (int j = i + 1; j < mNumPoints; ++j)
|
|
{
|
|
// Draw edge
|
|
RVec3 y_j = origin * mY[j];
|
|
DebugRenderer::sInstance->DrawLine(y_i, y_j, Color::sRed);
|
|
for (int k = j + 1; k < mNumPoints; ++k)
|
|
{
|
|
// Make sure triangle faces the origin
|
|
RVec3 y_k = origin * mY[k];
|
|
RVec3 center = (y_i + y_j + y_k) / Real(3);
|
|
RVec3 normal = (y_j - y_i).Cross(y_k - y_i);
|
|
if (normal.Dot(center) < Real(0))
|
|
DebugRenderer::sInstance->DrawTriangle(y_i, y_j, y_k, Color::sLightGrey);
|
|
else
|
|
DebugRenderer::sInstance->DrawTriangle(y_i, y_k, y_j, Color::sLightGrey);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Offset to the right
|
|
mOffset += Vec3(mGeometry->mBounds.GetSize().GetX() + 2.0f, 0, 0);
|
|
}
|
|
#endif // JPH_GJK_DEBUG
|
|
|
|
Vec3 mY[4]; ///< Support points on A - B
|
|
Vec3 mP[4]; ///< Support point on A
|
|
Vec3 mQ[4]; ///< Support point on B
|
|
int mNumPoints = 0; ///< Number of points in mY, mP and mQ that are valid
|
|
|
|
#ifdef JPH_GJK_DEBUG
|
|
DebugRenderer::GeometryRef mGeometry; ///< A visualization of the minkowski difference for state drawing
|
|
RVec3 mOffset = RVec3::sZero(); ///< Offset to use for state drawing
|
|
#endif
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|