godot-module-template/engine/thirdparty/jolt_physics/Jolt/AABBTree/TriangleCodec/TriangleCodecIndexed8BitPackSOA4Flags.h

556 lines
21 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/RayTriangle.h>
JPH_NAMESPACE_BEGIN
/// Store vertices in 64 bits and indices in 8 bits + 8 bit of flags per triangle like this:
///
/// TriangleBlockHeader,
/// TriangleBlock (4 triangles and their flags in 16 bytes),
/// TriangleBlock...
/// [Optional] UserData (4 bytes per triangle)
///
/// Vertices are stored:
///
/// VertexData (1 vertex in 64 bits),
/// VertexData...
///
/// They're compressed relative to the bounding box as provided by the node codec.
class TriangleCodecIndexed8BitPackSOA4Flags
{
public:
class TriangleHeader
{
public:
Float3 mOffset; ///< Offset of all vertices
Float3 mScale; ///< Scale of all vertices, vertex_position = mOffset + mScale * compressed_vertex_position
};
/// Size of the header (an empty struct is always > 0 bytes so this needs a separate variable)
static constexpr int TriangleHeaderSize = sizeof(TriangleHeader);
/// If this codec could return a different offset than the current buffer size when calling Pack()
static constexpr bool ChangesOffsetOnPack = false;
/// Amount of bits per component
enum EComponentData : uint32
{
COMPONENT_BITS = 21,
COMPONENT_MASK = (1 << COMPONENT_BITS) - 1,
};
/// Packed X and Y coordinate
enum EVertexXY : uint32
{
COMPONENT_X = 0,
COMPONENT_Y1 = COMPONENT_BITS,
COMPONENT_Y1_BITS = 32 - COMPONENT_BITS,
};
/// Packed Z and Y coordinate
enum EVertexZY : uint32
{
COMPONENT_Z = 0,
COMPONENT_Y2 = COMPONENT_BITS,
COMPONENT_Y2_BITS = 31 - COMPONENT_BITS,
};
/// A single packed vertex
struct VertexData
{
uint32 mVertexXY;
uint32 mVertexZY;
};
static_assert(sizeof(VertexData) == 8, "Compiler added padding");
/// A block of 4 triangles
struct TriangleBlock
{
uint8 mIndices[3][4]; ///< 8 bit indices to triangle vertices for 4 triangles in the form mIndices[vertex][triangle] where vertex in [0, 2] and triangle in [0, 3]
uint8 mFlags[4]; ///< Triangle flags (could contain material and active edges)
};
static_assert(sizeof(TriangleBlock) == 16, "Compiler added padding");
enum ETriangleBlockHeaderFlags : uint32
{
OFFSET_TO_VERTICES_BITS = 29, ///< Offset from current block to start of vertices in bytes
OFFSET_TO_VERTICES_MASK = (1 << OFFSET_TO_VERTICES_BITS) - 1,
OFFSET_NON_SIGNIFICANT_BITS = 2, ///< The offset from the current block to the start of the vertices must be a multiple of 4 bytes
OFFSET_NON_SIGNIFICANT_MASK = (1 << OFFSET_NON_SIGNIFICANT_BITS) - 1,
OFFSET_TO_USERDATA_BITS = 3, ///< When user data is stored, this is the number of blocks to skip to get to the user data (0 = no user data)
OFFSET_TO_USERDATA_MASK = (1 << OFFSET_TO_USERDATA_BITS) - 1,
};
/// A triangle header, will be followed by one or more TriangleBlocks
struct TriangleBlockHeader
{
const VertexData * GetVertexData() const { return reinterpret_cast<const VertexData *>(reinterpret_cast<const uint8 *>(this) + ((mFlags & OFFSET_TO_VERTICES_MASK) << OFFSET_NON_SIGNIFICANT_BITS)); }
const TriangleBlock * GetTriangleBlock() const { return reinterpret_cast<const TriangleBlock *>(reinterpret_cast<const uint8 *>(this) + sizeof(TriangleBlockHeader)); }
const uint32 * GetUserData() const { uint32 offset = mFlags >> OFFSET_TO_VERTICES_BITS; return offset == 0? nullptr : reinterpret_cast<const uint32 *>(GetTriangleBlock() + offset); }
uint32 mFlags;
};
static_assert(sizeof(TriangleBlockHeader) == 4, "Compiler added padding");
/// This class is used to validate that the triangle data will not be degenerate after compression
class ValidationContext
{
public:
/// Constructor
ValidationContext(const IndexedTriangleList &inTriangles, const VertexList &inVertices) :
mVertices(inVertices)
{
// Only used the referenced triangles, just like EncodingContext::Finalize does
for (const IndexedTriangle &i : inTriangles)
for (uint32 idx : i.mIdx)
mBounds.Encapsulate(Vec3(inVertices[idx]));
}
/// Test if a triangle will be degenerate after quantization
bool IsDegenerate(const IndexedTriangle &inTriangle) const
{
// Quantize the triangle in the same way as EncodingContext::Finalize does
UVec4 quantized_vertex[3];
Vec3 compress_scale = Vec3::sReplicate(COMPONENT_MASK) / Vec3::sMax(mBounds.GetSize(), Vec3::sReplicate(1.0e-20f));
for (int i = 0; i < 3; ++i)
quantized_vertex[i] = ((Vec3(mVertices[inTriangle.mIdx[i]]) - mBounds.mMin) * compress_scale + Vec3::sReplicate(0.5f)).ToInt();
return quantized_vertex[0] == quantized_vertex[1] || quantized_vertex[1] == quantized_vertex[2] || quantized_vertex[0] == quantized_vertex[2];
}
private:
const VertexList & mVertices;
AABox mBounds;
};
/// This class is used to encode and compress triangle data into a byte buffer
class EncodingContext
{
public:
/// Indicates a vertex hasn't been seen yet in the triangle list
static constexpr uint32 cNotFound = 0xffffffff;
/// Construct the encoding context
explicit EncodingContext(const VertexList &inVertices) :
mVertexMap(inVertices.size(), cNotFound)
{
}
/// Mimics the size a call to Pack() would add to the buffer
void PreparePack(const IndexedTriangle *inTriangles, uint inNumTriangles, bool inStoreUserData, uint64 &ioBufferSize)
{
// Add triangle block header
ioBufferSize += sizeof(TriangleBlockHeader);
// Compute first vertex that this batch will use (ensuring there's enough room if none of the vertices are shared)
uint start_vertex = Clamp((int)mVertexCount - 256 + (int)inNumTriangles * 3, 0, (int)mVertexCount);
// Pack vertices
uint padded_triangle_count = AlignUp(inNumTriangles, 4);
for (uint t = 0; t < padded_triangle_count; t += 4)
{
// Add triangle block header
ioBufferSize += sizeof(TriangleBlock);
for (uint vertex_nr = 0; vertex_nr < 3; ++vertex_nr)
for (uint block_tri_idx = 0; block_tri_idx < 4; ++block_tri_idx)
{
// Fetch vertex index. Create degenerate triangles for padding triangles.
bool triangle_available = t + block_tri_idx < inNumTriangles;
uint32 src_vertex_index = triangle_available? inTriangles[t + block_tri_idx].mIdx[vertex_nr] : inTriangles[inNumTriangles - 1].mIdx[0];
// Check if we've seen this vertex before and if it is in the range that we can encode
uint32 &vertex_index = mVertexMap[src_vertex_index];
if (vertex_index == cNotFound || vertex_index < start_vertex)
{
// Add vertex
vertex_index = mVertexCount;
mVertexCount++;
}
}
}
// Add user data
if (inStoreUserData)
ioBufferSize += inNumTriangles * sizeof(uint32);
}
/// Mimics the size the Finalize() call would add to ioBufferSize
void FinalizePreparePack(uint64 &ioBufferSize)
{
// Remember where the vertices are going to start in the output buffer
JPH_ASSERT(IsAligned(ioBufferSize, 4));
mVerticesStartIdx = size_t(ioBufferSize);
// Add vertices to buffer
ioBufferSize += uint64(mVertexCount) * sizeof(VertexData);
// Reserve the amount of memory we need for the vertices
mVertices.reserve(mVertexCount);
// Set vertex map back to 'not found'
for (uint32 &v : mVertexMap)
v = cNotFound;
}
/// Pack the triangles in inContainer to ioBuffer. This stores the mMaterialIndex of a triangle in the 8 bit flags.
/// Returns size_t(-1) on error.
size_t Pack(const IndexedTriangle *inTriangles, uint inNumTriangles, bool inStoreUserData, ByteBuffer &ioBuffer, const char *&outError)
{
JPH_ASSERT(inNumTriangles > 0);
// Determine position of triangles start
size_t triangle_block_start = ioBuffer.size();
// Allocate triangle block header
TriangleBlockHeader *header = ioBuffer.Allocate<TriangleBlockHeader>();
// Compute first vertex that this batch will use (ensuring there's enough room if none of the vertices are shared)
uint start_vertex = Clamp((int)mVertices.size() - 256 + (int)inNumTriangles * 3, 0, (int)mVertices.size());
// Store the start vertex offset relative to TriangleBlockHeader
size_t offset_to_vertices = mVerticesStartIdx - triangle_block_start + size_t(start_vertex) * sizeof(VertexData);
if (offset_to_vertices & OFFSET_NON_SIGNIFICANT_MASK)
{
outError = "TriangleCodecIndexed8BitPackSOA4Flags: Internal Error: Offset has non-significant bits set";
return size_t(-1);
}
offset_to_vertices >>= OFFSET_NON_SIGNIFICANT_BITS;
if (offset_to_vertices > OFFSET_TO_VERTICES_MASK)
{
outError = "TriangleCodecIndexed8BitPackSOA4Flags: Offset to vertices doesn't fit. Too much data.";
return size_t(-1);
}
header->mFlags = uint32(offset_to_vertices);
// When we store user data we need to store the offset to the user data in TriangleBlocks
uint padded_triangle_count = AlignUp(inNumTriangles, 4);
if (inStoreUserData)
{
uint32 num_blocks = padded_triangle_count >> 2;
JPH_ASSERT(num_blocks <= OFFSET_TO_USERDATA_MASK);
header->mFlags |= num_blocks << OFFSET_TO_VERTICES_BITS;
}
// Pack vertices
for (uint t = 0; t < padded_triangle_count; t += 4)
{
TriangleBlock *block = ioBuffer.Allocate<TriangleBlock>();
for (uint vertex_nr = 0; vertex_nr < 3; ++vertex_nr)
for (uint block_tri_idx = 0; block_tri_idx < 4; ++block_tri_idx)
{
// Fetch vertex index. Create degenerate triangles for padding triangles.
bool triangle_available = t + block_tri_idx < inNumTriangles;
uint32 src_vertex_index = triangle_available? inTriangles[t + block_tri_idx].mIdx[vertex_nr] : inTriangles[inNumTriangles - 1].mIdx[0];
// Check if we've seen this vertex before and if it is in the range that we can encode
uint32 &vertex_index = mVertexMap[src_vertex_index];
if (vertex_index == cNotFound || vertex_index < start_vertex)
{
// Add vertex
vertex_index = (uint32)mVertices.size();
mVertices.push_back(src_vertex_index);
}
// Store vertex index
uint32 vertex_offset = vertex_index - start_vertex;
if (vertex_offset > 0xff)
{
outError = "TriangleCodecIndexed8BitPackSOA4Flags: Offset doesn't fit in 8 bit";
return size_t(-1);
}
block->mIndices[vertex_nr][block_tri_idx] = (uint8)vertex_offset;
// Store flags
uint32 flags = triangle_available? inTriangles[t + block_tri_idx].mMaterialIndex : 0;
if (flags > 0xff)
{
outError = "TriangleCodecIndexed8BitPackSOA4Flags: Material index doesn't fit in 8 bit";
return size_t(-1);
}
block->mFlags[block_tri_idx] = (uint8)flags;
}
}
// Store user data
if (inStoreUserData)
{
uint32 *user_data = ioBuffer.Allocate<uint32>(inNumTriangles);
for (uint t = 0; t < inNumTriangles; ++t)
user_data[t] = inTriangles[t].mUserData;
}
return triangle_block_start;
}
/// After all triangles have been packed, this finalizes the header and triangle buffer
void Finalize(const VertexList &inVertices, TriangleHeader *ioHeader, ByteBuffer &ioBuffer) const
{
// Assert that our reservations were correct
JPH_ASSERT(mVertices.size() == mVertexCount);
JPH_ASSERT(ioBuffer.size() == mVerticesStartIdx);
// Check if anything to do
if (mVertices.empty())
return;
// Calculate bounding box
AABox bounds;
for (uint32 v : mVertices)
bounds.Encapsulate(Vec3(inVertices[v]));
// Compress vertices
VertexData *vertices = ioBuffer.Allocate<VertexData>(mVertices.size());
Vec3 compress_scale = Vec3::sReplicate(COMPONENT_MASK) / Vec3::sMax(bounds.GetSize(), Vec3::sReplicate(1.0e-20f));
for (uint32 v : mVertices)
{
UVec4 c = ((Vec3(inVertices[v]) - bounds.mMin) * compress_scale + Vec3::sReplicate(0.5f)).ToInt();
JPH_ASSERT(c.GetX() <= COMPONENT_MASK);
JPH_ASSERT(c.GetY() <= COMPONENT_MASK);
JPH_ASSERT(c.GetZ() <= COMPONENT_MASK);
vertices->mVertexXY = c.GetX() + (c.GetY() << COMPONENT_Y1);
vertices->mVertexZY = c.GetZ() + ((c.GetY() >> COMPONENT_Y1_BITS) << COMPONENT_Y2);
++vertices;
}
// Store decompression information
bounds.mMin.StoreFloat3(&ioHeader->mOffset);
(bounds.GetSize() / Vec3::sReplicate(COMPONENT_MASK)).StoreFloat3(&ioHeader->mScale);
}
private:
using VertexMap = Array<uint32>;
uint32 mVertexCount = 0; ///< Number of vertices calculated during PreparePack
size_t mVerticesStartIdx = 0; ///< Start of the vertices in the output buffer, calculated during PreparePack
Array<uint32> mVertices; ///< Output vertices as an index into the original vertex list (inVertices), sorted according to occurrence
VertexMap mVertexMap; ///< Maps from the original mesh vertex index (inVertices) to the index in our output vertices (mVertices)
};
/// This class is used to decode and decompress triangle data packed by the EncodingContext
class DecodingContext
{
private:
/// Private helper function to unpack the 1 vertex of 4 triangles (outX contains the x coordinate of triangle 0 .. 3 etc.)
JPH_INLINE void Unpack(const VertexData *inVertices, UVec4Arg inIndex, Vec4 &outX, Vec4 &outY, Vec4 &outZ) const
{
// Get compressed data
UVec4 c1 = UVec4::sGatherInt4<8>(&inVertices->mVertexXY, inIndex);
UVec4 c2 = UVec4::sGatherInt4<8>(&inVertices->mVertexZY, inIndex);
// Unpack the x y and z component
UVec4 xc = UVec4::sAnd(c1, UVec4::sReplicate(COMPONENT_MASK));
UVec4 yc = UVec4::sOr(c1.LogicalShiftRight<COMPONENT_Y1>(), c2.LogicalShiftRight<COMPONENT_Y2>().LogicalShiftLeft<COMPONENT_Y1_BITS>());
UVec4 zc = UVec4::sAnd(c2, UVec4::sReplicate(COMPONENT_MASK));
// Convert to float
outX = Vec4::sFusedMultiplyAdd(xc.ToFloat(), mScaleX, mOffsetX);
outY = Vec4::sFusedMultiplyAdd(yc.ToFloat(), mScaleY, mOffsetY);
outZ = Vec4::sFusedMultiplyAdd(zc.ToFloat(), mScaleZ, mOffsetZ);
}
/// Private helper function to unpack 4 triangles from a triangle block
JPH_INLINE void Unpack(const TriangleBlock *inBlock, const VertexData *inVertices, Vec4 &outX1, Vec4 &outY1, Vec4 &outZ1, Vec4 &outX2, Vec4 &outY2, Vec4 &outZ2, Vec4 &outX3, Vec4 &outY3, Vec4 &outZ3) const
{
// Get the indices for the three vertices (reads 4 bytes extra, but these are the flags so that's ok)
UVec4 indices = UVec4::sLoadInt4(reinterpret_cast<const uint32 *>(&inBlock->mIndices[0]));
UVec4 iv1 = indices.Expand4Byte0();
UVec4 iv2 = indices.Expand4Byte4();
UVec4 iv3 = indices.Expand4Byte8();
#ifdef JPH_CPU_BIG_ENDIAN
// On big endian systems we need to reverse the bytes
iv1 = iv1.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>();
iv2 = iv2.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>();
iv3 = iv3.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>();
#endif
// Decompress the triangle data
Unpack(inVertices, iv1, outX1, outY1, outZ1);
Unpack(inVertices, iv2, outX2, outY2, outZ2);
Unpack(inVertices, iv3, outX3, outY3, outZ3);
}
public:
JPH_INLINE explicit DecodingContext(const TriangleHeader *inHeader) :
mOffsetX(Vec4::sReplicate(inHeader->mOffset.x)),
mOffsetY(Vec4::sReplicate(inHeader->mOffset.y)),
mOffsetZ(Vec4::sReplicate(inHeader->mOffset.z)),
mScaleX(Vec4::sReplicate(inHeader->mScale.x)),
mScaleY(Vec4::sReplicate(inHeader->mScale.y)),
mScaleZ(Vec4::sReplicate(inHeader->mScale.z))
{
}
/// Unpacks triangles in the format t1v1,t1v2,t1v3, t2v1,t2v2,t2v3, ...
JPH_INLINE void Unpack(const void *inTriangleStart, uint32 inNumTriangles, Vec3 *outTriangles) const
{
JPH_ASSERT(inNumTriangles > 0);
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const VertexData *vertices = header->GetVertexData();
const TriangleBlock *t = header->GetTriangleBlock();
const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
int triangles_left = inNumTriangles;
do
{
// Unpack the vertices for 4 triangles
Vec4 v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z;
Unpack(t, vertices, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
// Transpose it so we get normal vectors
Mat44 v1 = Mat44(v1x, v1y, v1z, Vec4::sZero()).Transposed();
Mat44 v2 = Mat44(v2x, v2y, v2z, Vec4::sZero()).Transposed();
Mat44 v3 = Mat44(v3x, v3y, v3z, Vec4::sZero()).Transposed();
// Store triangle data
for (int i = 0; i < 4 && triangles_left > 0; ++i, --triangles_left)
{
*outTriangles++ = v1.GetColumn3(i);
*outTriangles++ = v2.GetColumn3(i);
*outTriangles++ = v3.GetColumn3(i);
}
++t;
}
while (t < end);
}
/// Tests a ray against the packed triangles
JPH_INLINE float TestRay(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, const void *inTriangleStart, uint32 inNumTriangles, float inClosest, uint32 &outClosestTriangleIndex) const
{
JPH_ASSERT(inNumTriangles > 0);
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const VertexData *vertices = header->GetVertexData();
const TriangleBlock *t = header->GetTriangleBlock();
const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
Vec4 closest = Vec4::sReplicate(inClosest);
UVec4 closest_triangle_idx = UVec4::sZero();
UVec4 start_triangle_idx = UVec4::sZero();
do
{
// Unpack the vertices for 4 triangles
Vec4 v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z;
Unpack(t, vertices, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
// Perform ray vs triangle test
Vec4 distance = RayTriangle4(inRayOrigin, inRayDirection, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
// Update closest with the smaller values
UVec4 smaller = Vec4::sLess(distance, closest);
closest = Vec4::sSelect(closest, distance, smaller);
// Update triangle index with the smallest values
UVec4 triangle_idx = start_triangle_idx + UVec4(0, 1, 2, 3);
closest_triangle_idx = UVec4::sSelect(closest_triangle_idx, triangle_idx, smaller);
// Next block
++t;
start_triangle_idx += UVec4::sReplicate(4);
}
while (t < end);
// Get the smallest component
Vec4::sSort4(closest, closest_triangle_idx);
outClosestTriangleIndex = closest_triangle_idx.GetX();
return closest.GetX();
}
/// Decode a single triangle
inline void GetTriangle(const void *inTriangleStart, uint32 inTriangleIdx, Vec3 &outV1, Vec3 &outV2, Vec3 &outV3) const
{
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const VertexData *vertices = header->GetVertexData();
const TriangleBlock *block = header->GetTriangleBlock() + (inTriangleIdx >> 2);
uint32 block_triangle_idx = inTriangleIdx & 0b11;
// Get the 3 vertices
const VertexData &v1 = vertices[block->mIndices[0][block_triangle_idx]];
const VertexData &v2 = vertices[block->mIndices[1][block_triangle_idx]];
const VertexData &v3 = vertices[block->mIndices[2][block_triangle_idx]];
// Pack the vertices
UVec4 c1(v1.mVertexXY, v2.mVertexXY, v3.mVertexXY, 0);
UVec4 c2(v1.mVertexZY, v2.mVertexZY, v3.mVertexZY, 0);
// Unpack the x y and z component
UVec4 xc = UVec4::sAnd(c1, UVec4::sReplicate(COMPONENT_MASK));
UVec4 yc = UVec4::sOr(c1.LogicalShiftRight<COMPONENT_Y1>(), c2.LogicalShiftRight<COMPONENT_Y2>().LogicalShiftLeft<COMPONENT_Y1_BITS>());
UVec4 zc = UVec4::sAnd(c2, UVec4::sReplicate(COMPONENT_MASK));
// Convert to float
Vec4 vx = Vec4::sFusedMultiplyAdd(xc.ToFloat(), mScaleX, mOffsetX);
Vec4 vy = Vec4::sFusedMultiplyAdd(yc.ToFloat(), mScaleY, mOffsetY);
Vec4 vz = Vec4::sFusedMultiplyAdd(zc.ToFloat(), mScaleZ, mOffsetZ);
// Transpose it so we get normal vectors
Mat44 trans = Mat44(vx, vy, vz, Vec4::sZero()).Transposed();
outV1 = trans.GetAxisX();
outV2 = trans.GetAxisY();
outV3 = trans.GetAxisZ();
}
/// Get user data for a triangle
JPH_INLINE uint32 GetUserData(const void *inTriangleStart, uint32 inTriangleIdx) const
{
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const uint32 *user_data = header->GetUserData();
return user_data != nullptr? user_data[inTriangleIdx] : 0;
}
/// Get flags for entire triangle block
JPH_INLINE static void sGetFlags(const void *inTriangleStart, uint32 inNumTriangles, uint8 *outTriangleFlags)
{
JPH_ASSERT(inNumTriangles > 0);
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const TriangleBlock *t = header->GetTriangleBlock();
const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
int triangles_left = inNumTriangles;
do
{
for (int i = 0; i < 4 && triangles_left > 0; ++i, --triangles_left)
*outTriangleFlags++ = t->mFlags[i];
++t;
}
while (t < end);
}
/// Get flags for a particular triangle
JPH_INLINE static uint8 sGetFlags(const void *inTriangleStart, int inTriangleIndex)
{
const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
const TriangleBlock *first_block = header->GetTriangleBlock();
return first_block[inTriangleIndex >> 2].mFlags[inTriangleIndex & 0b11];
}
/// Unpacks triangles and flags, convenience function
JPH_INLINE void Unpack(const void *inTriangleStart, uint32 inNumTriangles, Vec3 *outTriangles, uint8 *outTriangleFlags) const
{
Unpack(inTriangleStart, inNumTriangles, outTriangles);
sGetFlags(inTriangleStart, inNumTriangles, outTriangleFlags);
}
private:
Vec4 mOffsetX;
Vec4 mOffsetY;
Vec4 mOffsetZ;
Vec4 mScaleX;
Vec4 mScaleY;
Vec4 mScaleZ;
};
};
JPH_NAMESPACE_END