godot-module-template/engine/thirdparty/jolt_physics/Jolt/AABBTree/AABBTreeToBuffer.h

297 lines
10 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/AABBTree/AABBTreeBuilder.h>
#include <Jolt/Core/ByteBuffer.h>
#include <Jolt/Geometry/IndexedTriangle.h>
JPH_NAMESPACE_BEGIN
/// Conversion algorithm that converts an AABB tree to an optimized binary buffer
template <class TriangleCodec, class NodeCodec>
class AABBTreeToBuffer
{
public:
/// Header for the tree
using NodeHeader = typename NodeCodec::Header;
/// Size in bytes of the header of the tree
static const int HeaderSize = NodeCodec::HeaderSize;
/// Maximum number of children per node in the tree
static const int NumChildrenPerNode = NodeCodec::NumChildrenPerNode;
/// Header for the triangles
using TriangleHeader = typename TriangleCodec::TriangleHeader;
/// Size in bytes of the header for the triangles
static const int TriangleHeaderSize = TriangleCodec::TriangleHeaderSize;
/// Convert AABB tree. Returns false if failed.
bool Convert(const Array<IndexedTriangle> &inTriangles, const Array<AABBTreeBuilder::Node> &inNodes, const VertexList &inVertices, const AABBTreeBuilder::Node *inRoot, bool inStoreUserData, const char *&outError)
{
typename NodeCodec::EncodingContext node_ctx;
typename TriangleCodec::EncodingContext tri_ctx(inVertices);
// Child nodes out of loop so we don't constantly realloc it
Array<const AABBTreeBuilder::Node *> child_nodes;
child_nodes.reserve(NumChildrenPerNode);
// First calculate how big the tree is going to be.
// Since the tree can be huge for very large meshes, we don't want
// to reallocate the buffer as it may cause out of memory situations.
// This loop mimics the construction loop below.
uint64 total_size = HeaderSize + TriangleHeaderSize;
size_t node_count = 1; // Start with root node
size_t to_process_max_size = 1; // Track size of queues so we can do a single reserve below
size_t to_process_triangles_max_size = 0;
{ // A scope to free the memory associated with to_estimate and to_estimate_triangles
Array<const AABBTreeBuilder::Node *> to_estimate;
Array<const AABBTreeBuilder::Node *> to_estimate_triangles;
to_estimate.push_back(inRoot);
for (;;)
{
while (!to_estimate.empty())
{
// Get the next node to process
const AABBTreeBuilder::Node *node = to_estimate.back();
to_estimate.pop_back();
// Update total size
node_ctx.PrepareNodeAllocate(node, total_size);
if (node->HasChildren())
{
// Collect the first NumChildrenPerNode sub-nodes in the tree
child_nodes.clear(); // Won't free the memory
node->GetNChildren(inNodes, NumChildrenPerNode, child_nodes);
// Increment the number of nodes we're going to store
node_count += child_nodes.size();
// Insert in reverse order so we estimate left child first when taking nodes from the back
for (int idx = int(child_nodes.size()) - 1; idx >= 0; --idx)
{
// Store triangles in separate list so we process them last
const AABBTreeBuilder::Node *child = child_nodes[idx];
if (child->HasChildren())
{
to_estimate.push_back(child);
to_process_max_size = max(to_estimate.size(), to_process_max_size);
}
else
{
to_estimate_triangles.push_back(child);
to_process_triangles_max_size = max(to_estimate_triangles.size(), to_process_triangles_max_size);
}
}
}
else
{
// Update total size
tri_ctx.PreparePack(&inTriangles[node->mTrianglesBegin], node->mNumTriangles, inStoreUserData, total_size);
}
}
// If we've got triangles to estimate, loop again with just the triangles
if (to_estimate_triangles.empty())
break;
else
to_estimate.swap(to_estimate_triangles);
}
}
// Finalize the prepare stage for the triangle context
tri_ctx.FinalizePreparePack(total_size);
// Reserve the buffer
if (size_t(total_size) != total_size)
{
outError = "AABBTreeToBuffer: Out of memory!";
return false;
}
mTree.reserve(size_t(total_size));
// Add headers
NodeHeader *header = HeaderSize > 0? mTree.Allocate<NodeHeader>() : nullptr;
TriangleHeader *triangle_header = TriangleHeaderSize > 0? mTree.Allocate<TriangleHeader>() : nullptr;
struct NodeData
{
const AABBTreeBuilder::Node * mNode = nullptr; // Node that this entry belongs to
Vec3 mNodeBoundsMin; // Quantized node bounds
Vec3 mNodeBoundsMax;
size_t mNodeStart = size_t(-1); // Start of node in mTree
size_t mTriangleStart = size_t(-1); // Start of the triangle data in mTree
size_t mChildNodeStart[NumChildrenPerNode]; // Start of the children of the node in mTree
size_t mChildTrianglesStart[NumChildrenPerNode]; // Start of the triangle data in mTree
size_t * mParentChildNodeStart = nullptr; // Where to store mNodeStart (to patch mChildNodeStart of my parent)
size_t * mParentTrianglesStart = nullptr; // Where to store mTriangleStart (to patch mChildTrianglesStart of my parent)
uint mNumChildren = 0; // Number of children
};
Array<NodeData *> to_process;
to_process.reserve(to_process_max_size);
Array<NodeData *> to_process_triangles;
to_process_triangles.reserve(to_process_triangles_max_size);
Array<NodeData> node_list;
node_list.reserve(node_count); // Needed to ensure that array is not reallocated, so we can keep pointers in the array
NodeData root;
root.mNode = inRoot;
root.mNodeBoundsMin = inRoot->mBounds.mMin;
root.mNodeBoundsMax = inRoot->mBounds.mMax;
node_list.push_back(root);
to_process.push_back(&node_list.back());
for (;;)
{
while (!to_process.empty())
{
// Get the next node to process
NodeData *node_data = to_process.back();
to_process.pop_back();
// Due to quantization box could have become bigger, not smaller
JPH_ASSERT(AABox(node_data->mNodeBoundsMin, node_data->mNodeBoundsMax).Contains(node_data->mNode->mBounds), "AABBTreeToBuffer: Bounding box became smaller!");
// Collect the first NumChildrenPerNode sub-nodes in the tree
child_nodes.clear(); // Won't free the memory
node_data->mNode->GetNChildren(inNodes, NumChildrenPerNode, child_nodes);
node_data->mNumChildren = (uint)child_nodes.size();
// Fill in default child bounds
Vec3 child_bounds_min[NumChildrenPerNode], child_bounds_max[NumChildrenPerNode];
for (size_t i = 0; i < NumChildrenPerNode; ++i)
if (i < child_nodes.size())
{
child_bounds_min[i] = child_nodes[i]->mBounds.mMin;
child_bounds_max[i] = child_nodes[i]->mBounds.mMax;
}
else
{
child_bounds_min[i] = Vec3::sZero();
child_bounds_max[i] = Vec3::sZero();
}
// Start a new node
node_data->mNodeStart = node_ctx.NodeAllocate(node_data->mNode, node_data->mNodeBoundsMin, node_data->mNodeBoundsMax, child_nodes, child_bounds_min, child_bounds_max, mTree, outError);
if (node_data->mNodeStart == size_t(-1))
return false;
if (node_data->mNode->HasChildren())
{
// Insert in reverse order so we process left child first when taking nodes from the back
for (int idx = int(child_nodes.size()) - 1; idx >= 0; --idx)
{
const AABBTreeBuilder::Node *child_node = child_nodes[idx];
// Due to quantization box could have become bigger, not smaller
JPH_ASSERT(AABox(child_bounds_min[idx], child_bounds_max[idx]).Contains(child_node->mBounds), "AABBTreeToBuffer: Bounding box became smaller!");
// Add child to list of nodes to be processed
NodeData child;
child.mNode = child_node;
child.mNodeBoundsMin = child_bounds_min[idx];
child.mNodeBoundsMax = child_bounds_max[idx];
child.mParentChildNodeStart = &node_data->mChildNodeStart[idx];
child.mParentTrianglesStart = &node_data->mChildTrianglesStart[idx];
node_list.push_back(child);
// Store triangles in separate list so we process them last
if (child_node->HasChildren())
to_process.push_back(&node_list.back());
else
to_process_triangles.push_back(&node_list.back());
}
}
else
{
// Add triangles
node_data->mTriangleStart = tri_ctx.Pack(&inTriangles[node_data->mNode->mTrianglesBegin], node_data->mNode->mNumTriangles, inStoreUserData, mTree, outError);
if (node_data->mTriangleStart == size_t(-1))
return false;
}
// Patch offset into parent
if (node_data->mParentChildNodeStart != nullptr)
{
*node_data->mParentChildNodeStart = node_data->mNodeStart;
*node_data->mParentTrianglesStart = node_data->mTriangleStart;
}
}
// If we've got triangles to process, loop again with just the triangles
if (to_process_triangles.empty())
break;
else
to_process.swap(to_process_triangles);
}
// Assert that our reservation was correct (we don't know if we swapped the arrays or not)
JPH_ASSERT(to_process_max_size == to_process.capacity() || to_process_triangles_max_size == to_process.capacity());
JPH_ASSERT(to_process_max_size == to_process_triangles.capacity() || to_process_triangles_max_size == to_process_triangles.capacity());
// Finalize all nodes
for (NodeData &n : node_list)
if (!node_ctx.NodeFinalize(n.mNode, n.mNodeStart, n.mNumChildren, n.mChildNodeStart, n.mChildTrianglesStart, mTree, outError))
return false;
// Finalize the triangles
tri_ctx.Finalize(inVertices, triangle_header, mTree);
// Validate that our reservations were correct
if (node_count != node_list.size())
{
outError = "Internal Error: Node memory estimate was incorrect, memory corruption!";
return false;
}
if (total_size != mTree.size())
{
outError = "Internal Error: Tree memory estimate was incorrect, memory corruption!";
return false;
}
// Finalize the nodes
return node_ctx.Finalize(header, inRoot, node_list[0].mNodeStart, node_list[0].mTriangleStart, outError);
}
/// Get resulting data
inline const ByteBuffer & GetBuffer() const
{
return mTree;
}
/// Get resulting data
inline ByteBuffer & GetBuffer()
{
return mTree;
}
/// Get header for tree
inline const NodeHeader * GetNodeHeader() const
{
return mTree.Get<NodeHeader>(0);
}
/// Get header for triangles
inline const TriangleHeader * GetTriangleHeader() const
{
return mTree.Get<TriangleHeader>(HeaderSize);
}
/// Get root of resulting tree
inline const void * GetRoot() const
{
return mTree.Get<void>(HeaderSize + TriangleHeaderSize);
}
private:
ByteBuffer mTree; ///< Resulting tree structure
};
JPH_NAMESPACE_END