// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include #include #include #include #include #include #include #include #include #include #include #ifdef JPH_DEBUG_RENDERER #include #endif // JPH_DEBUG_RENDERER JPH_NAMESPACE_BEGIN JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TaperedCapsuleShapeSettings) { JPH_ADD_BASE_CLASS(TaperedCapsuleShapeSettings, ConvexShapeSettings) JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mHalfHeightOfTaperedCylinder) JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mTopRadius) JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mBottomRadius) } bool TaperedCapsuleShapeSettings::IsSphere() const { return max(mTopRadius, mBottomRadius) >= 2.0f * mHalfHeightOfTaperedCylinder + min(mTopRadius, mBottomRadius); } ShapeSettings::ShapeResult TaperedCapsuleShapeSettings::Create() const { if (mCachedResult.IsEmpty()) { Ref shape; if (IsValid() && IsSphere()) { // Determine sphere center and radius float radius, center; if (mTopRadius > mBottomRadius) { radius = mTopRadius; center = mHalfHeightOfTaperedCylinder; } else { radius = mBottomRadius; center = -mHalfHeightOfTaperedCylinder; } // Create sphere shape = new SphereShape(radius, mMaterial); // Offset sphere if needed if (abs(center) > 1.0e-6f) { RotatedTranslatedShapeSettings rot_trans(Vec3(0, center, 0), Quat::sIdentity(), shape); mCachedResult = rot_trans.Create(); } else mCachedResult.Set(shape); } else { // Normal tapered capsule shape shape = new TaperedCapsuleShape(*this, mCachedResult); } } return mCachedResult; } TaperedCapsuleShapeSettings::TaperedCapsuleShapeSettings(float inHalfHeightOfTaperedCylinder, float inTopRadius, float inBottomRadius, const PhysicsMaterial *inMaterial) : ConvexShapeSettings(inMaterial), mHalfHeightOfTaperedCylinder(inHalfHeightOfTaperedCylinder), mTopRadius(inTopRadius), mBottomRadius(inBottomRadius) { } TaperedCapsuleShape::TaperedCapsuleShape(const TaperedCapsuleShapeSettings &inSettings, ShapeResult &outResult) : ConvexShape(EShapeSubType::TaperedCapsule, inSettings, outResult), mTopRadius(inSettings.mTopRadius), mBottomRadius(inSettings.mBottomRadius) { if (mTopRadius <= 0.0f) { outResult.SetError("Invalid top radius"); return; } if (mBottomRadius <= 0.0f) { outResult.SetError("Invalid bottom radius"); return; } if (inSettings.mHalfHeightOfTaperedCylinder <= 0.0f) { outResult.SetError("Invalid height"); return; } // If this goes off one of the sphere ends falls totally inside the other and you should use a sphere instead if (inSettings.IsSphere()) { outResult.SetError("One sphere embedded in other sphere, please use sphere shape instead"); return; } // Approximation: The center of mass is exactly half way between the top and bottom cap of the tapered capsule mTopCenter = inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius); mBottomCenter = -inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius); // Calculate center of mass mCenterOfMass = Vec3(0, inSettings.mHalfHeightOfTaperedCylinder - mTopCenter, 0); // Calculate convex radius mConvexRadius = min(mTopRadius, mBottomRadius); JPH_ASSERT(mConvexRadius > 0.0f); // Calculate the sin and tan of the angle that the cone surface makes with the Y axis // See: TaperedCapsuleShape.gliffy mSinAlpha = (mBottomRadius - mTopRadius) / (mTopCenter - mBottomCenter); JPH_ASSERT(mSinAlpha >= -1.0f && mSinAlpha <= 1.0f); mTanAlpha = Tan(ASin(mSinAlpha)); outResult.Set(this); } class TaperedCapsuleShape::TaperedCapsule final : public Support { public: TaperedCapsule(Vec3Arg inTopCenter, Vec3Arg inBottomCenter, float inTopRadius, float inBottomRadius, float inConvexRadius) : mTopCenter(inTopCenter), mBottomCenter(inBottomCenter), mTopRadius(inTopRadius), mBottomRadius(inBottomRadius), mConvexRadius(inConvexRadius) { static_assert(sizeof(TaperedCapsule) <= sizeof(SupportBuffer), "Buffer size too small"); JPH_ASSERT(IsAligned(this, alignof(TaperedCapsule))); } virtual Vec3 GetSupport(Vec3Arg inDirection) const override { // Check zero vector float len = inDirection.Length(); if (len == 0.0f) return mTopCenter + Vec3(0, mTopRadius, 0); // Return top // Check if the support of the top sphere or bottom sphere is bigger Vec3 support_top = mTopCenter + (mTopRadius / len) * inDirection; Vec3 support_bottom = mBottomCenter + (mBottomRadius / len) * inDirection; if (support_top.Dot(inDirection) > support_bottom.Dot(inDirection)) return support_top; else return support_bottom; } virtual float GetConvexRadius() const override { return mConvexRadius; } private: Vec3 mTopCenter; Vec3 mBottomCenter; float mTopRadius; float mBottomRadius; float mConvexRadius; }; const ConvexShape::Support *TaperedCapsuleShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const { JPH_ASSERT(IsValidScale(inScale)); // Get scaled tapered capsule Vec3 abs_scale = inScale.Abs(); float scale_xz = abs_scale.GetX(); float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0); Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0); float scaled_top_radius = scale_xz * mTopRadius; float scaled_bottom_radius = scale_xz * mBottomRadius; float scaled_convex_radius = scale_xz * mConvexRadius; switch (inMode) { case ESupportMode::IncludeConvexRadius: return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, scaled_top_radius, scaled_bottom_radius, 0.0f); case ESupportMode::ExcludeConvexRadius: case ESupportMode::Default: { // Get radii reduced by convex radius float tr = scaled_top_radius - scaled_convex_radius; float br = scaled_bottom_radius - scaled_convex_radius; JPH_ASSERT(tr >= 0.0f && br >= 0.0f); JPH_ASSERT(tr == 0.0f || br == 0.0f, "Convex radius should be that of the smallest sphere"); return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, tr, br, scaled_convex_radius); } } JPH_ASSERT(false); return nullptr; } void TaperedCapsuleShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const { JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID"); JPH_ASSERT(IsValidScale(inScale)); // Check zero vector float len = inDirection.Length(); if (len == 0.0f) return; // Get scaled tapered capsule Vec3 abs_scale = inScale.Abs(); float scale_xz = abs_scale.GetX(); float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0); Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0); float scaled_top_radius = scale_xz * mTopRadius; float scaled_bottom_radius = scale_xz * mBottomRadius; // Get support point for top and bottom sphere in the opposite of inDirection (including convex radius) Vec3 support_top = scaled_top_center - (scaled_top_radius / len) * inDirection; Vec3 support_bottom = scaled_bottom_center - (scaled_bottom_radius / len) * inDirection; // Get projection on inDirection float proj_top = support_top.Dot(inDirection); float proj_bottom = support_bottom.Dot(inDirection); // If projection is roughly equal then return line, otherwise we return nothing as there's only 1 point if (abs(proj_top - proj_bottom) < cCapsuleProjectionSlop * len) { outVertices.push_back(inCenterOfMassTransform * support_top); outVertices.push_back(inCenterOfMassTransform * support_bottom); } } MassProperties TaperedCapsuleShape::GetMassProperties() const { AABox box = GetInertiaApproximation(); MassProperties p; p.SetMassAndInertiaOfSolidBox(box.GetSize(), GetDensity()); return p; } Vec3 TaperedCapsuleShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const { JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID"); // See: TaperedCapsuleShape.gliffy // We need to calculate ty and by in order to see if the position is on the top or bottom sphere // sin(alpha) = by / br = ty / tr // => by = sin(alpha) * br, ty = sin(alpha) * tr if (inLocalSurfacePosition.GetY() > mTopCenter + mSinAlpha * mTopRadius) return (inLocalSurfacePosition - Vec3(0, mTopCenter, 0)).Normalized(); else if (inLocalSurfacePosition.GetY() < mBottomCenter + mSinAlpha * mBottomRadius) return (inLocalSurfacePosition - Vec3(0, mBottomCenter, 0)).Normalized(); else { // Get perpendicular vector to the surface in the xz plane Vec3 perpendicular = Vec3(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ()).NormalizedOr(Vec3::sAxisX()); // We know that the perpendicular has length 1 and that it needs a y component where tan(alpha) = y / 1 in order to align it to the surface perpendicular.SetY(mTanAlpha); return perpendicular.Normalized(); } } AABox TaperedCapsuleShape::GetLocalBounds() const { float max_radius = max(mTopRadius, mBottomRadius); return AABox(Vec3(-max_radius, mBottomCenter - mBottomRadius, -max_radius), Vec3(max_radius, mTopCenter + mTopRadius, max_radius)); } AABox TaperedCapsuleShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const { JPH_ASSERT(IsValidScale(inScale)); Vec3 abs_scale = inScale.Abs(); float scale_xz = abs_scale.GetX(); float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule Vec3 bottom_extent = Vec3::sReplicate(scale_xz * mBottomRadius); Vec3 bottom_center = inCenterOfMassTransform * Vec3(0, scale_y * mBottomCenter, 0); Vec3 top_extent = Vec3::sReplicate(scale_xz * mTopRadius); Vec3 top_center = inCenterOfMassTransform * Vec3(0, scale_y * mTopCenter, 0); Vec3 p1 = Vec3::sMin(top_center - top_extent, bottom_center - bottom_extent); Vec3 p2 = Vec3::sMax(top_center + top_extent, bottom_center + bottom_extent); return AABox(p1, p2); } void TaperedCapsuleShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const { JPH_ASSERT(IsValidScale(inScale)); Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation(); // Get scaled tapered capsule Vec3 abs_scale = inScale.Abs(); float scale_y = abs_scale.GetY(); float scale_xz = abs_scale.GetX(); Vec3 scale_y_flip(1, Sign(inScale.GetY()), 1); Vec3 scaled_top_center(0, scale_y * mTopCenter, 0); Vec3 scaled_bottom_center(0, scale_y * mBottomCenter, 0); float scaled_top_radius = scale_xz * mTopRadius; float scaled_bottom_radius = scale_xz * mBottomRadius; for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v) if (v.GetInvMass() > 0.0f) { Vec3 local_pos = scale_y_flip * (inverse_transform * v.GetPosition()); Vec3 position, normal; // If the vertex is inside the cone starting at the top center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the top sphere // This corresponds to: Dot(y-axis, (local_pos - top_center) / |local_pos - top_center|) >= cos(PI/2 - alpha) // <=> (local_pos - top_center).y >= sin(alpha) * |local_pos - top_center| Vec3 top_center_to_local_pos = local_pos - scaled_top_center; float top_center_to_local_pos_len = top_center_to_local_pos.Length(); if (top_center_to_local_pos.GetY() >= mSinAlpha * top_center_to_local_pos_len) { // Top sphere normal = top_center_to_local_pos_len != 0.0f? top_center_to_local_pos / top_center_to_local_pos_len : Vec3::sAxisY(); position = scaled_top_center + scaled_top_radius * normal; } else { // If the vertex is outside the cone starting at the bottom center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the bottom sphere // This corresponds to: Dot(y-axis, (local_pos - bottom_center) / |local_pos - bottom_center|) <= cos(PI/2 - alpha) // <=> (local_pos - bottom_center).y <= sin(alpha) * |local_pos - bottom_center| Vec3 bottom_center_to_local_pos = local_pos - scaled_bottom_center; float bottom_center_to_local_pos_len = bottom_center_to_local_pos.Length(); if (bottom_center_to_local_pos.GetY() <= mSinAlpha * bottom_center_to_local_pos_len) { // Bottom sphere normal = bottom_center_to_local_pos_len != 0.0f? bottom_center_to_local_pos / bottom_center_to_local_pos_len : -Vec3::sAxisY(); } else { // Tapered cylinder normal = Vec3(local_pos.GetX(), 0, local_pos.GetZ()).NormalizedOr(Vec3::sAxisX()); normal.SetY(mTanAlpha); normal = normal.NormalizedOr(Vec3::sAxisX()); } position = scaled_bottom_center + scaled_bottom_radius * normal; } Plane plane = Plane::sFromPointAndNormal(position, normal); float penetration = -plane.SignedDistance(local_pos); if (v.UpdatePenetration(penetration)) { // Need to flip the normal's y if capsule is flipped (this corresponds to flipping both the point and the normal around y) plane.SetNormal(scale_y_flip * plane.GetNormal()); // Store collision v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex); } } } #ifdef JPH_DEBUG_RENDERER void TaperedCapsuleShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const { if (mGeometry == nullptr) { SupportBuffer buffer; const Support *support = GetSupportFunction(ESupportMode::IncludeConvexRadius, buffer, Vec3::sOne()); mGeometry = inRenderer->CreateTriangleGeometryForConvex([support](Vec3Arg inDirection) { return support->GetSupport(inDirection); }); } // Preserve flip along y axis but make sure we're not inside out Vec3 scale = ScaleHelpers::IsInsideOut(inScale)? Vec3(-1, 1, 1) * inScale : inScale; RMat44 world_transform = inCenterOfMassTransform * Mat44::sScale(scale); AABox bounds = Shape::GetWorldSpaceBounds(inCenterOfMassTransform, inScale); float lod_scale_sq = Square(max(mTopRadius, mBottomRadius)); Color color = inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor; DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid; inRenderer->DrawGeometry(world_transform, bounds, lod_scale_sq, color, mGeometry, DebugRenderer::ECullMode::CullBackFace, DebugRenderer::ECastShadow::On, draw_mode); } #endif // JPH_DEBUG_RENDERER AABox TaperedCapsuleShape::GetInertiaApproximation() const { // TODO: For now the mass and inertia is that of a box float avg_radius = 0.5f * (mTopRadius + mBottomRadius); return AABox(Vec3(-avg_radius, mBottomCenter - mBottomRadius, -avg_radius), Vec3(avg_radius, mTopCenter + mTopRadius, avg_radius)); } void TaperedCapsuleShape::SaveBinaryState(StreamOut &inStream) const { ConvexShape::SaveBinaryState(inStream); inStream.Write(mCenterOfMass); inStream.Write(mTopRadius); inStream.Write(mBottomRadius); inStream.Write(mTopCenter); inStream.Write(mBottomCenter); inStream.Write(mConvexRadius); inStream.Write(mSinAlpha); inStream.Write(mTanAlpha); } void TaperedCapsuleShape::RestoreBinaryState(StreamIn &inStream) { ConvexShape::RestoreBinaryState(inStream); inStream.Read(mCenterOfMass); inStream.Read(mTopRadius); inStream.Read(mBottomRadius); inStream.Read(mTopCenter); inStream.Read(mBottomCenter); inStream.Read(mConvexRadius); inStream.Read(mSinAlpha); inStream.Read(mTanAlpha); } bool TaperedCapsuleShape::IsValidScale(Vec3Arg inScale) const { return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScale(inScale.Abs()); } Vec3 TaperedCapsuleShape::MakeScaleValid(Vec3Arg inScale) const { Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale); return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs()); } void TaperedCapsuleShape::sRegister() { ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::TaperedCapsule); f.mConstruct = []() -> Shape * { return new TaperedCapsuleShape; }; f.mColor = Color::sGreen; } JPH_NAMESPACE_END