#include "render-sdf.h" #include "arithmetics.hpp" #include "DistanceMapping.h" #include "pixel-conversion.hpp" #include "bitmap-interpolation.hpp" namespace msdfgen { static float distVal(float dist, DistanceMapping mapping) { return (float) clamp(mapping(dist)+.5); } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd; interpolate(&sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = float(sd >= sdThreshold); } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd; interpolate(&sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = distVal(sd+sdBias, distanceMapping); } } } } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd; interpolate(&sd, sdf, scale*Point2(x+.5, y+.5)); float v = float(sd >= sdThreshold); output(x, y)[0] = v; output(x, y)[1] = v; output(x, y)[2] = v; } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd; interpolate(&sd, sdf, scale*Point2(x+.5, y+.5)); float v = distVal(sd+sdBias, distanceMapping); output(x, y)[0] = v; output(x, y)[1] = v; output(x, y)[2] = v; } } } } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[3]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = float(median(sd[0], sd[1], sd[2]) >= sdThreshold); } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[3]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = distVal(median(sd[0], sd[1], sd[2])+sdBias, distanceMapping); } } } } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[3]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); output(x, y)[0] = float(sd[0] >= sdThreshold); output(x, y)[1] = float(sd[1] >= sdThreshold); output(x, y)[2] = float(sd[2] >= sdThreshold); } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[3]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); output(x, y)[0] = distVal(sd[0]+sdBias, distanceMapping); output(x, y)[1] = distVal(sd[1]+sdBias, distanceMapping); output(x, y)[2] = distVal(sd[2]+sdBias, distanceMapping); } } } } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[4]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = float(median(sd[0], sd[1], sd[2]) >= sdThreshold); } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[4]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); *output(x, y) = distVal(median(sd[0], sd[1], sd[2])+sdBias, distanceMapping); } } } } void renderSDF(const BitmapRef &output, const BitmapConstRef &sdf, Range sdfPxRange, float sdThreshold) { Vector2 scale((double) sdf.width/output.width, (double) sdf.height/output.height); if (sdfPxRange.lower == sdfPxRange.upper) { for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[4]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); output(x, y)[0] = float(sd[0] >= sdThreshold); output(x, y)[1] = float(sd[1] >= sdThreshold); output(x, y)[2] = float(sd[2] >= sdThreshold); output(x, y)[3] = float(sd[3] >= sdThreshold); } } } else { sdfPxRange *= (double) (output.width+output.height)/(sdf.width+sdf.height); DistanceMapping distanceMapping = DistanceMapping::inverse(sdfPxRange); float sdBias = .5f-sdThreshold; for (int y = 0; y < output.height; ++y) { for (int x = 0; x < output.width; ++x) { float sd[4]; interpolate(sd, sdf, scale*Point2(x+.5, y+.5)); output(x, y)[0] = distVal(sd[0]+sdBias, distanceMapping); output(x, y)[1] = distVal(sd[1]+sdBias, distanceMapping); output(x, y)[2] = distVal(sd[2]+sdBias, distanceMapping); output(x, y)[3] = distVal(sd[3]+sdBias, distanceMapping); } } } } void simulate8bit(const BitmapRef &bitmap) { const float *end = bitmap.pixels+1*bitmap.width*bitmap.height; for (float *p = bitmap.pixels; p < end; ++p) *p = pixelByteToFloat(pixelFloatToByte(*p)); } void simulate8bit(const BitmapRef &bitmap) { const float *end = bitmap.pixels+3*bitmap.width*bitmap.height; for (float *p = bitmap.pixels; p < end; ++p) *p = pixelByteToFloat(pixelFloatToByte(*p)); } void simulate8bit(const BitmapRef &bitmap) { const float *end = bitmap.pixels+4*bitmap.width*bitmap.height; for (float *p = bitmap.pixels; p < end; ++p) *p = pixelByteToFloat(pixelFloatToByte(*p)); } }