// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2022 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include JPH_NAMESPACE_BEGIN /// Pulley constraint settings, used to create a pulley constraint. /// A pulley connects two bodies via two fixed world points to each other similar to a distance constraint. /// We define Length1 = |BodyPoint1 - FixedPoint1| where Body1 is a point on body 1 in world space and FixedPoint1 a fixed point in world space /// Length2 = |BodyPoint2 - FixedPoint2| /// The constraint keeps the two line segments constrained so that /// MinDistance <= Length1 + Ratio * Length2 <= MaxDistance class JPH_EXPORT PulleyConstraintSettings final : public TwoBodyConstraintSettings { JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, PulleyConstraintSettings) public: // See: ConstraintSettings::SaveBinaryState virtual void SaveBinaryState(StreamOut &inStream) const override; /// Create an instance of this constraint virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override; /// This determines in which space the constraint is setup, specified properties below should be in the specified space EConstraintSpace mSpace = EConstraintSpace::WorldSpace; /// Body 1 constraint attachment point (space determined by mSpace). RVec3 mBodyPoint1 = RVec3::sZero(); /// Fixed world point to which body 1 is connected (always world space) RVec3 mFixedPoint1 = RVec3::sZero(); /// Body 2 constraint attachment point (space determined by mSpace) RVec3 mBodyPoint2 = RVec3::sZero(); /// Fixed world point to which body 2 is connected (always world space) RVec3 mFixedPoint2 = RVec3::sZero(); /// Ratio between the two line segments (see formula above), can be used to create a block and tackle float mRatio = 1.0f; /// The minimum length of the line segments (see formula above), use -1 to calculate the length based on the positions of the objects when the constraint is created. float mMinLength = 0.0f; /// The maximum length of the line segments (see formula above), use -1 to calculate the length based on the positions of the objects when the constraint is created. float mMaxLength = -1.0f; protected: // See: ConstraintSettings::RestoreBinaryState virtual void RestoreBinaryState(StreamIn &inStream) override; }; /// A pulley constraint. class JPH_EXPORT PulleyConstraint final : public TwoBodyConstraint { public: JPH_OVERRIDE_NEW_DELETE /// Construct distance constraint PulleyConstraint(Body &inBody1, Body &inBody2, const PulleyConstraintSettings &inSettings); // Generic interface of a constraint virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Pulley; } virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override; virtual void SetupVelocityConstraint(float inDeltaTime) override; virtual void ResetWarmStart() override; virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override; virtual bool SolveVelocityConstraint(float inDeltaTime) override; virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override; #ifdef JPH_DEBUG_RENDERER virtual void DrawConstraint(DebugRenderer *inRenderer) const override; #endif // JPH_DEBUG_RENDERER virtual void SaveState(StateRecorder &inStream) const override; virtual void RestoreState(StateRecorder &inStream) override; virtual Ref GetConstraintSettings() const override; // See: TwoBodyConstraint virtual Mat44 GetConstraintToBody1Matrix() const override { return Mat44::sTranslation(mLocalSpacePosition1); } virtual Mat44 GetConstraintToBody2Matrix() const override { return Mat44::sTranslation(mLocalSpacePosition2); } // Note: Incorrect rotation as we don't track the original rotation difference, should not matter though as the constraint is not limiting rotation. /// Update the minimum and maximum length for the constraint void SetLength(float inMinLength, float inMaxLength) { JPH_ASSERT(inMinLength >= 0.0f && inMinLength <= inMaxLength); mMinLength = inMinLength; mMaxLength = inMaxLength; } float GetMinLength() const { return mMinLength; } float GetMaxLength() const { return mMaxLength; } /// Get the current length of both segments (multiplied by the ratio for segment 2) float GetCurrentLength() const { return Vec3(mWorldSpacePosition1 - mFixedPosition1).Length() + mRatio * Vec3(mWorldSpacePosition2 - mFixedPosition2).Length(); } ///@name Get Lagrange multiplier from last physics update (the linear impulse applied to satisfy the constraint) inline float GetTotalLambdaPosition() const { return mIndependentAxisConstraintPart.GetTotalLambda(); } private: // Calculates world positions and normals and returns current length float CalculatePositionsNormalsAndLength(); // Internal helper function to calculate the values below void CalculateConstraintProperties(); // CONFIGURATION PROPERTIES FOLLOW // Local space constraint positions on the bodies Vec3 mLocalSpacePosition1; Vec3 mLocalSpacePosition2; // World space fixed positions RVec3 mFixedPosition1; RVec3 mFixedPosition2; /// Ratio between the two line segments float mRatio; // The minimum/maximum length of the line segments float mMinLength; float mMaxLength; // RUN TIME PROPERTIES FOLLOW // World space positions and normal RVec3 mWorldSpacePosition1; RVec3 mWorldSpacePosition2; Vec3 mWorldSpaceNormal1; Vec3 mWorldSpaceNormal2; // Depending on if the length < min or length > max we can apply forces to prevent further violations float mMinLambda; float mMaxLambda; // The constraint part IndependentAxisConstraintPart mIndependentAxisConstraintPart; }; JPH_NAMESPACE_END