// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include #include #include #include #include #include JPH_NAMESPACE_BEGIN JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(PathConstraintPathHermite::Point) { JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mPosition) JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mTangent) JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mNormal) } JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(PathConstraintPathHermite) { JPH_ADD_BASE_CLASS(PathConstraintPathHermite, PathConstraintPath) JPH_ADD_ATTRIBUTE(PathConstraintPathHermite, mPoints) } // Calculate position and tangent for a Cubic Hermite Spline segment static inline void sCalculatePositionAndTangent(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float inT, Vec3 &outPosition, Vec3 &outTangent) { // Calculate factors for Cubic Hermite Spline // See: https://en.wikipedia.org/wiki/Cubic_Hermite_spline float t2 = inT * inT; float t3 = inT * t2; float h00 = 2.0f * t3 - 3.0f * t2 + 1.0f; float h10 = t3 - 2.0f * t2 + inT; float h01 = -2.0f * t3 + 3.0f * t2; float h11 = t3 - t2; // Calculate d/dt for factors to calculate the tangent float ddt_h00 = 6.0f * (t2 - inT); float ddt_h10 = 3.0f * t2 - 4.0f * inT + 1.0f; float ddt_h01 = -ddt_h00; float ddt_h11 = 3.0f * t2 - 2.0f * inT; outPosition = h00 * inP1 + h10 * inM1 + h01 * inP2 + h11 * inM2; outTangent = ddt_h00 * inP1 + ddt_h10 * inM1 + ddt_h01 * inP2 + ddt_h11 * inM2; } // Calculate the closest point to the origin for a Cubic Hermite Spline segment // This is used to get an estimate for the interval in which the closest point can be found, // the interval [0, 1] is too big for Newton Raphson to work on because it is solving a 5th degree polynomial which may // have multiple local minima that are not the root. This happens especially when the path is straight (tangents aligned with inP2 - inP1). // Based on the bisection method: https://en.wikipedia.org/wiki/Bisection_method static inline void sCalculateClosestPointThroughBisection(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float &outTMin, float &outTMax) { outTMin = 0.0f; outTMax = 1.0f; // To get the closest point of the curve to the origin we need to solve: // d/dt P(t) . P(t) = 0 for t, where P(t) is the point on the curve segment // Using d/dt (a(t) . b(t)) = d/dt a(t) . b(t) + a(t) . d/dt b(t) // See: https://proofwiki.org/wiki/Derivative_of_Dot_Product_of_Vector-Valued_Functions // d/dt P(t) . P(t) = 2 P(t) d/dt P(t) = 2 P(t) . Tangent(t) // Calculate the derivative at t = 0, we know P(0) = inP1 and Tangent(0) = inM1 float ddt_min = inP1.Dot(inM1); // Leaving out factor 2, we're only interested in the root if (abs(ddt_min) < 1.0e-6f) { // Derivative is near zero, we found our root outTMax = 0.0f; return; } bool ddt_min_negative = ddt_min < 0.0f; // Calculate derivative at t = 1, we know P(1) = inP2 and Tangent(1) = inM2 float ddt_max = inP2.Dot(inM2); if (abs(ddt_max) < 1.0e-6f) { // Derivative is near zero, we found our root outTMin = 1.0f; return; } bool ddt_max_negative = ddt_max < 0.0f; // If the signs of the derivative are not different, this algorithm can't find the root if (ddt_min_negative == ddt_max_negative) return; // With 4 iterations we'll get a result accurate to 1 / 2^4 = 0.0625 for (int iteration = 0; iteration < 4; ++iteration) { float t_mid = 0.5f * (outTMin + outTMax); Vec3 position, tangent; sCalculatePositionAndTangent(inP1, inM1, inP2, inM2, t_mid, position, tangent); float ddt_mid = position.Dot(tangent); if (abs(ddt_mid) < 1.0e-6f) { // Derivative is near zero, we found our root outTMin = outTMax = t_mid; return; } bool ddt_mid_negative = ddt_mid < 0.0f; // Update the search interval so that the signs of the derivative at both ends of the interval are still different if (ddt_mid_negative == ddt_min_negative) outTMin = t_mid; else outTMax = t_mid; } } // Calculate the closest point to the origin for a Cubic Hermite Spline segment // Only considers the range t e [inTMin, inTMax] and will stop as soon as the closest point falls outside of that range static inline float sCalculateClosestPointThroughNewtonRaphson(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float inTMin, float inTMax, float &outDistanceSq) { // This is the closest position on the curve to the origin that we found Vec3 position; // Calculate the size of the interval float interval = inTMax - inTMin; // Start in the middle of the interval float t = 0.5f * (inTMin + inTMax); // Do max 10 iterations to prevent taking too much CPU time for (int iteration = 0; iteration < 10; ++iteration) { // Calculate derivative at t, see comment at sCalculateClosestPointThroughBisection for derivation of the equations Vec3 tangent; sCalculatePositionAndTangent(inP1, inM1, inP2, inM2, t, position, tangent); float ddt = position.Dot(tangent); // Leaving out factor 2, we're only interested in the root // Calculate derivative of ddt: d^2/dt P(t) . P(t) = d/dt (2 P(t) . Tangent(t)) // = 2 (d/dt P(t)) . Tangent(t) + P(t) . d/dt Tangent(t)) = 2 (Tangent(t) . Tangent(t) + P(t) . d/dt Tangent(t)) float d2dt_h00 = 12.0f * t - 6.0f; float d2dt_h10 = 6.0f * t - 4.0f; float d2dt_h01 = -d2dt_h00; float d2dt_h11 = 6.0f * t - 2.0f; Vec3 ddt_tangent = d2dt_h00 * inP1 + d2dt_h10 * inM1 + d2dt_h01 * inP2 + d2dt_h11 * inM2; float d2dt = tangent.Dot(tangent) + position.Dot(ddt_tangent); // Leaving out factor 2, because we left it out above too // If d2dt is zero, the curve is flat and there are multiple t's for which we are closest to the origin, stop now if (d2dt == 0.0f) break; // Do a Newton Raphson step // See: https://en.wikipedia.org/wiki/Newton%27s_method // Clamp against [-interval, interval] to avoid overshooting too much, we're not interested outside the interval float delta = Clamp(-ddt / d2dt, -interval, interval); // If we're stepping away further from t e [inTMin, inTMax] stop now if ((t > inTMax && delta > 0.0f) || (t < inTMin && delta < 0.0f)) break; // If we've converged, stop now t += delta; if (abs(delta) < 1.0e-4f) break; } // Calculate the distance squared for the origin to the curve outDistanceSq = position.LengthSq(); return t; } void PathConstraintPathHermite::GetIndexAndT(float inFraction, int &outIndex, float &outT) const { int num_points = int(mPoints.size()); // Start by truncating the fraction to get the index and storing the remainder in t int index = int(trunc(inFraction)); float t = inFraction - float(index); if (IsLooping()) { JPH_ASSERT(!mPoints.front().mPosition.IsClose(mPoints.back().mPosition), "A looping path should have a different first and last point!"); // Make sure index is positive by adding a multiple of num_points if (index < 0) index += (-index / num_points + 1) * num_points; // Index needs to be modulo num_points index = index % num_points; } else { // Clamp against range of points if (index < 0) { index = 0; t = 0.0f; } else if (index >= num_points - 1) { index = num_points - 2; t = 1.0f; } } outIndex = index; outT = t; } float PathConstraintPathHermite::GetClosestPoint(Vec3Arg inPosition, float inFractionHint) const { JPH_PROFILE_FUNCTION(); int num_points = int(mPoints.size()); // Start with last point on the path, in the non-looping case we won't be visiting this point float best_dist_sq = (mPoints[num_points - 1].mPosition - inPosition).LengthSq(); float best_t = float(num_points - 1); // Loop over all points for (int i = 0, max_i = IsLooping()? num_points : num_points - 1; i < max_i; ++i) { const Point &p1 = mPoints[i]; const Point &p2 = mPoints[(i + 1) % num_points]; // Make the curve relative to inPosition Vec3 p1_pos = p1.mPosition - inPosition; Vec3 p2_pos = p2.mPosition - inPosition; // Get distance to p1 float dist_sq = p1_pos.LengthSq(); if (dist_sq < best_dist_sq) { best_t = float(i); best_dist_sq = dist_sq; } // First find an interval for the closest point so that we can start doing Newton Raphson steps float t_min, t_max; sCalculateClosestPointThroughBisection(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, t_max); if (t_min == t_max) { // If the function above returned no interval then it found the root already and we can just calculate the distance Vec3 position, tangent; sCalculatePositionAndTangent(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, position, tangent); dist_sq = position.LengthSq(); if (dist_sq < best_dist_sq) { best_t = float(i) + t_min; best_dist_sq = dist_sq; } } else { // Get closest distance along curve segment float t = sCalculateClosestPointThroughNewtonRaphson(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, t_max, dist_sq); if (t >= 0.0f && t <= 1.0f && dist_sq < best_dist_sq) { best_t = float(i) + t; best_dist_sq = dist_sq; } } } return best_t; } void PathConstraintPathHermite::GetPointOnPath(float inFraction, Vec3 &outPathPosition, Vec3 &outPathTangent, Vec3 &outPathNormal, Vec3 &outPathBinormal) const { JPH_PROFILE_FUNCTION(); // Determine which hermite spline segment we need int index; float t; GetIndexAndT(inFraction, index, t); // Get the points on the segment const Point &p1 = mPoints[index]; const Point &p2 = mPoints[(index + 1) % int(mPoints.size())]; // Calculate the position and tangent on the path Vec3 tangent; sCalculatePositionAndTangent(p1.mPosition, p1.mTangent, p2.mPosition, p2.mTangent, t, outPathPosition, tangent); outPathTangent = tangent.Normalized(); // Just linearly interpolate the normal Vec3 normal = (1.0f - t) * p1.mNormal + t * p2.mNormal; // Calculate binormal outPathBinormal = normal.Cross(outPathTangent).Normalized(); // Recalculate normal so it is perpendicular to both (linear interpolation will cause it not to be) outPathNormal = outPathTangent.Cross(outPathBinormal); JPH_ASSERT(outPathNormal.IsNormalized()); } void PathConstraintPathHermite::SaveBinaryState(StreamOut &inStream) const { PathConstraintPath::SaveBinaryState(inStream); inStream.Write(mPoints); } void PathConstraintPathHermite::RestoreBinaryState(StreamIn &inStream) { PathConstraintPath::RestoreBinaryState(inStream); inStream.Read(mPoints); } JPH_NAMESPACE_END