// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include JPH_NAMESPACE_BEGIN /// Quaternion based constraint that constrains rotation around all axis so that only translation is allowed. /// /// NOTE: This constraint part is more expensive than the RotationEulerConstraintPart and slightly more correct since /// RotationEulerConstraintPart::SolvePositionConstraint contains an approximation. In practice the difference /// is small, so the RotationEulerConstraintPart is probably the better choice. /// /// Rotation is fixed between bodies like this: /// /// q2 = q1 r0 /// /// Where: /// q1, q2 = world space quaternions representing rotation of body 1 and 2. /// r0 = initial rotation between bodies in local space of body 1, this can be calculated by: /// /// q20 = q10 r0 /// <=> r0 = q10^* q20 /// /// Where: /// q10, q20 = initial world space rotations of body 1 and 2. /// q10^* = conjugate of quaternion q10 (which is the same as the inverse for a unit quaternion) /// /// We exclusively use the conjugate below: /// /// r0^* = q20^* q10 /// /// The error in the rotation is (in local space of body 1): /// /// q2 = q1 error r0 /// <=> error = q1^* q2 r0^* /// /// The imaginary part of the quaternion represents the rotation axis * sin(angle / 2). The real part of the quaternion /// does not add any additional information (we know the quaternion in normalized) and we're removing 3 degrees of freedom /// so we want 3 parameters. Therefore we define the constraint equation like: /// /// C = A q1^* q2 r0^* = 0 /// /// Where (if you write a quaternion as [real-part, i-part, j-part, k-part]): /// /// [0, 1, 0, 0] /// A = [0, 0, 1, 0] /// [0, 0, 0, 1] /// /// or in our case since we store a quaternion like [i-part, j-part, k-part, real-part]: /// /// [1, 0, 0, 0] /// A = [0, 1, 0, 0] /// [0, 0, 1, 0] /// /// Time derivative: /// /// d/dt C = A (q1^* d/dt(q2) + d/dt(q1^*) q2) r0^* /// = A (q1^* (1/2 W2 q2) + (1/2 W1 q1)^* q2) r0^* /// = 1/2 A (q1^* W2 q2 + q1^* W1^* q2) r0^* /// = 1/2 A (q1^* W2 q2 - q1^* W1 * q2) r0^* /// = 1/2 A ML(q1^*) MR(q2 r0^*) (W2 - W1) /// = 1/2 A ML(q1^*) MR(q2 r0^*) A^T (w2 - w1) /// /// Where: /// W1 = [0, w1], W2 = [0, w2] (converting angular velocity to imaginary part of quaternion). /// w1, w2 = angular velocity of body 1 and 2. /// d/dt(q) = 1/2 W q (time derivative of a quaternion). /// W^* = -W (conjugate negates angular velocity as quaternion). /// ML(q): 4x4 matrix so that q * p = ML(q) * p, where q and p are quaternions. /// MR(p): 4x4 matrix so that q * p = MR(p) * q, where q and p are quaternions. /// A^T: Transpose of A. /// /// Jacobian: /// /// J = [0, -1/2 A ML(q1^*) MR(q2 r0^*) A^T, 0, 1/2 A ML(q1^*) MR(q2 r0^*) A^T] /// = [0, -JP, 0, JP] /// /// Suggested reading: /// - 3D Constraint Derivations for Impulse Solvers - Marijn Tamis /// - Game Physics Pearls - Section 9 - Quaternion Based Constraints - Claude Lacoursiere class RotationQuatConstraintPart { private: /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const { // Apply impulse if delta is not zero if (inLambda != Vec3::sZero()) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if (ioBody1.IsDynamic()) ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1_JPT.Multiply3x3(inLambda)); if (ioBody2.IsDynamic()) ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2_JPT.Multiply3x3(inLambda)); return true; } return false; } public: /// Return inverse of initial rotation from body 1 to body 2 in body 1 space static Quat sGetInvInitialOrientation(const Body &inBody1, const Body &inBody2) { // q20 = q10 r0 // <=> r0 = q10^-1 q20 // <=> r0^-1 = q20^-1 q10 // // where: // // q20 = initial orientation of body 2 // q10 = initial orientation of body 1 // r0 = initial rotation from body 1 to body 2 return inBody2.GetRotation().Conjugated() * inBody1.GetRotation(); } /// Calculate properties used during the functions below inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, const Body &inBody2, Mat44Arg inRotation2, QuatArg inInvInitialOrientation) { // Calculate: JP = 1/2 A ML(q1^*) MR(q2 r0^*) A^T Mat44 jp = (Mat44::sQuatLeftMultiply(0.5f * inBody1.GetRotation().Conjugated()) * Mat44::sQuatRightMultiply(inBody2.GetRotation() * inInvInitialOrientation)).GetRotationSafe(); // Calculate properties used during constraint solving Mat44 inv_i1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero(); Mat44 inv_i2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero(); mInvI1_JPT = inv_i1.Multiply3x3RightTransposed(jp); mInvI2_JPT = inv_i2.Multiply3x3RightTransposed(jp); // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1 // = (JP * I1^-1 * JP^T + JP * I2^-1 * JP^T)^-1 // = (JP * (I1^-1 + I2^-1) * JP^T)^-1 if (!mEffectiveMass.SetInversed3x3(jp.Multiply3x3(inv_i1 + inv_i2).Multiply3x3RightTransposed(jp))) Deactivate(); else mEffectiveMass_JP = mEffectiveMass.Multiply3x3(jp); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = Mat44::sZero(); mEffectiveMass_JP = Mat44::sZero(); mTotalLambda = Vec3::sZero(); } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass(3, 3) != 0.0f; } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2) { // Calculate lagrange multiplier: // // lambda = -K^-1 (J v + b) Vec3 lambda = mEffectiveMass_JP.Multiply3x3(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity()); mTotalLambda += lambda; return ApplyVelocityStep(ioBody1, ioBody2, lambda); } /// Iteratively update the position constraint. Makes sure C(...) = 0. inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, QuatArg inInvInitialOrientation, float inBaumgarte) const { // Calculate constraint equation Vec3 c = (ioBody1.GetRotation().Conjugated() * ioBody2.GetRotation() * inInvInitialOrientation).GetXYZ(); if (c != Vec3::sZero()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out Vec3 lambda = -inBaumgarte * mEffectiveMass * c; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) ioBody1.SubRotationStep(mInvI1_JPT.Multiply3x3(lambda)); if (ioBody2.IsDynamic()) ioBody2.AddRotationStep(mInvI2_JPT.Multiply3x3(lambda)); return true; } return false; } /// Return lagrange multiplier Vec3 GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Mat44 mInvI1_JPT; Mat44 mInvI2_JPT; Mat44 mEffectiveMass; Mat44 mEffectiveMass_JP; Vec3 mTotalLambda { Vec3::sZero() }; }; JPH_NAMESPACE_END