// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2022 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include JPH_NAMESPACE_BEGIN /// Constraint part to an AxisConstraintPart but both bodies have an independent axis on which the force is applied. /// /// Constraint equation: /// /// \f[C = (x_1 + r_1 - f_1) . n_1 + r (x_2 + r_2 - f_2) \cdot n_2\f] /// /// Calculating the Jacobian: /// /// \f[dC/dt = (v_1 + w_1 \times r_1) \cdot n_1 + (x_1 + r_1 - f_1) \cdot d n_1/dt + r (v_2 + w_2 \times r_2) \cdot n_2 + r (x_2 + r_2 - f_2) \cdot d n_2/dt\f] /// /// Assuming that d n1/dt and d n2/dt are small this becomes: /// /// \f[(v_1 + w_1 \times r_1) \cdot n_1 + r (v_2 + w_2 \times r_2) \cdot n_2\f] /// \f[= v_1 \cdot n_1 + r_1 \times n_1 \cdot w_1 + r v_2 \cdot n_2 + r r_2 \times n_2 \cdot w_2\f] /// /// Jacobian: /// /// \f[J = \begin{bmatrix}n_1 & r_1 \times n_1 & r n_2 & r r_2 \times n_2\end{bmatrix}\f] /// /// Effective mass: /// /// \f[K = m_1^{-1} + r_1 \times n_1 I_1^{-1} r_1 \times n_1 + r^2 m_2^{-1} + r^2 r_2 \times n_2 I_2^{-1} r_2 \times n_2\f] /// /// Used terms (here and below, everything in world space):\n /// n1 = (x1 + r1 - f1) / |x1 + r1 - f1|, axis along which the force is applied for body 1\n /// n2 = (x2 + r2 - f2) / |x2 + r2 - f2|, axis along which the force is applied for body 2\n /// r = ratio how forces are applied between bodies.\n /// x1, x2 = center of mass for the bodies.\n /// v = [v1, w1, v2, w2].\n /// v1, v2 = linear velocity of body 1 and 2.\n /// w1, w2 = angular velocity of body 1 and 2.\n /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n /// b = velocity bias.\n /// \f$\beta\f$ = baumgarte constant. class IndependentAxisConstraintPart { /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inLambda) const { // Apply impulse if delta is not zero if (inLambda != 0.0f) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if (ioBody1.IsDynamic()) { MotionProperties *mp1 = ioBody1.GetMotionProperties(); mp1->AddLinearVelocityStep((mp1->GetInverseMass() * inLambda) * inN1); mp1->AddAngularVelocityStep(mInvI1_R1xN1 * inLambda); } if (ioBody2.IsDynamic()) { MotionProperties *mp2 = ioBody2.GetMotionProperties(); mp2->AddLinearVelocityStep((inRatio * mp2->GetInverseMass() * inLambda) * inN2); mp2->AddAngularVelocityStep(mInvI2_RatioR2xN2 * inLambda); } return true; } return false; } public: /// Calculate properties used during the functions below /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inR1 The position on which the constraint operates on body 1 relative to COM /// @param inN1 The world space normal in which the constraint operates for body 1 /// @param inR2 The position on which the constraint operates on body 1 relative to COM /// @param inN2 The world space normal in which the constraint operates for body 2 /// @param inRatio The ratio how forces are applied between bodies inline void CalculateConstraintProperties(const Body &inBody1, const Body &inBody2, Vec3Arg inR1, Vec3Arg inN1, Vec3Arg inR2, Vec3Arg inN2, float inRatio) { JPH_ASSERT(inN1.IsNormalized(1.0e-4f) && inN2.IsNormalized(1.0e-4f)); float inv_effective_mass = 0.0f; if (!inBody1.IsStatic()) { const MotionProperties *mp1 = inBody1.GetMotionProperties(); mR1xN1 = inR1.Cross(inN1); mInvI1_R1xN1 = mp1->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), mR1xN1); inv_effective_mass += mp1->GetInverseMass() + mInvI1_R1xN1.Dot(mR1xN1); } if (!inBody2.IsStatic()) { const MotionProperties *mp2 = inBody2.GetMotionProperties(); mRatioR2xN2 = inRatio * inR2.Cross(inN2); mInvI2_RatioR2xN2 = mp2->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), mRatioR2xN2); inv_effective_mass += Square(inRatio) * mp2->GetInverseMass() + mInvI2_RatioR2xN2.Dot(mRatioR2xN2); } // Calculate inverse effective mass: K = J M^-1 J^T if (inv_effective_mass == 0.0f) Deactivate(); else mEffectiveMass = 1.0f / inv_effective_mass; } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = 0.0f; mTotalLambda = 0.0f; } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass != 0.0f; } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inN1 The world space normal in which the constraint operates for body 1 /// @param inN2 The world space normal in which the constraint operates for body 2 /// @param inRatio The ratio how forces are applied between bodies /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, inRatio, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inN1 The world space normal in which the constraint operates for body 1 /// @param inN2 The world space normal in which the constraint operates for body 2 /// @param inRatio The ratio how forces are applied between bodies /// @param inMinLambda Minimum angular impulse to apply (N m s) /// @param inMaxLambda Maximum angular impulse to apply (N m s) inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inMinLambda, float inMaxLambda) { // Lagrange multiplier is: // // lambda = -K^-1 (J v + b) float lambda = -mEffectiveMass * (inN1.Dot(ioBody1.GetLinearVelocity()) + mR1xN1.Dot(ioBody1.GetAngularVelocity()) + inRatio * inN2.Dot(ioBody2.GetLinearVelocity()) + mRatioR2xN2.Dot(ioBody2.GetAngularVelocity())); float new_lambda = Clamp(mTotalLambda + lambda, inMinLambda, inMaxLambda); // Clamp impulse lambda = new_lambda - mTotalLambda; // Lambda potentially got clamped, calculate the new impulse to apply mTotalLambda = new_lambda; // Store accumulated impulse return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, inRatio, lambda); } /// Return lagrange multiplier float GetTotalLambda() const { return mTotalLambda; } /// Iteratively update the position constraint. Makes sure C(...) == 0. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inN1 The world space normal in which the constraint operates for body 1 /// @param inN2 The world space normal in which the constraint operates for body 2 /// @param inRatio The ratio how forces are applied between bodies /// @param inC Value of the constraint equation (C) /// @param inBaumgarte Baumgarte constant (fraction of the error to correct) inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inC, float inBaumgarte) const { if (inC != 0.0f) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out float lambda = -mEffectiveMass * inBaumgarte * inC; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) { ioBody1.AddPositionStep((lambda * ioBody1.GetMotionPropertiesUnchecked()->GetInverseMass()) * inN1); ioBody1.AddRotationStep(lambda * mInvI1_R1xN1); } if (ioBody2.IsDynamic()) { ioBody2.AddPositionStep((lambda * inRatio * ioBody2.GetMotionPropertiesUnchecked()->GetInverseMass()) * inN2); ioBody2.AddRotationStep(lambda * mInvI2_RatioR2xN2); } return true; } return false; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Vec3 mR1xN1; Vec3 mInvI1_R1xN1; Vec3 mRatioR2xN2; Vec3 mInvI2_RatioR2xN2; float mEffectiveMass = 0.0f; float mTotalLambda = 0.0f; }; JPH_NAMESPACE_END