// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include #include JPH_NAMESPACE_BEGIN /// Constraint that constrains rotation along 1 axis /// /// Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, see section 2.4.5 /// /// Constraint equation (eq 108): /// /// \f[C = \theta(t) - \theta_{min}\f] /// /// Jacobian (eq 109): /// /// \f[J = \begin{bmatrix}0 & -a^T & 0 & a^T\end{bmatrix}\f] /// /// Used terms (here and below, everything in world space):\n /// a = axis around which rotation is constrained (normalized).\n /// x1, x2 = center of mass for the bodies.\n /// v = [v1, w1, v2, w2].\n /// v1, v2 = linear velocity of body 1 and 2.\n /// w1, w2 = angular velocity of body 1 and 2.\n /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n /// b = velocity bias.\n /// \f$\beta\f$ = baumgarte constant. class AngleConstraintPart { /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const { // Apply impulse if delta is not zero if (inLambda != 0.0f) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if (ioBody1.IsDynamic()) ioBody1.GetMotionProperties()->SubAngularVelocityStep(inLambda * mInvI1_Axis); if (ioBody2.IsDynamic()) ioBody2.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI2_Axis); return true; } return false; } /// Internal helper function to calculate the inverse effective mass JPH_INLINE float CalculateInverseEffectiveMass(const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis) { JPH_ASSERT(inWorldSpaceAxis.IsNormalized(1.0e-4f)); // Calculate properties used below mInvI1_Axis = inBody1.IsDynamic()? inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceAxis) : Vec3::sZero(); mInvI2_Axis = inBody2.IsDynamic()? inBody2.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), inWorldSpaceAxis) : Vec3::sZero(); // Calculate inverse effective mass: K = J M^-1 J^T return inWorldSpaceAxis.Dot(mInvI1_Axis + mInvI2_Axis); } public: /// Calculate properties used during the functions below /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized) /// Set the following terms to zero if you don't want to drive the constraint to zero with a spring: /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b inline void CalculateConstraintProperties(const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else { mEffectiveMass = 1.0f / inv_effective_mass; mSpringPart.CalculateSpringPropertiesWithBias(inBias); } } /// Calculate properties used during the functions below /// @param inDeltaTime Time step /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized) /// Set the following terms to zero if you don't want to drive the constraint to zero with a spring: /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C) /// @param inFrequency Oscillation frequency (Hz) /// @param inDamping Damping factor (0 = no damping, 1 = critical damping) inline void CalculateConstraintPropertiesWithFrequencyAndDamping(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inFrequency, float inDamping) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inFrequency, inDamping, mEffectiveMass); } /// Calculate properties used during the functions below /// @param inDeltaTime Time step /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized) /// Set the following terms to zero if you don't want to drive the constraint to zero with a spring: /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C) /// @param inStiffness Spring stiffness k. /// @param inDamping Spring damping coefficient c. inline void CalculateConstraintPropertiesWithStiffnessAndDamping(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inStiffness, float inDamping) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inStiffness, inDamping, mEffectiveMass); } /// Selects one of the above functions based on the spring settings inline void CalculateConstraintPropertiesWithSettings(float inDeltaTime, const Body &inBody1, const Body &inBody2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, const SpringSettings &inSpringSettings) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inBody2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else if (inSpringSettings.mMode == ESpringMode::FrequencyAndDamping) mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mFrequency, inSpringSettings.mDamping, mEffectiveMass); else mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mStiffness, inSpringSettings.mDamping, mEffectiveMass); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = 0.0f; mTotalLambda = 0.0f; } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass != 0.0f; } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis The axis of rotation along which the constraint acts (normalized) /// @param inMinLambda Minimum angular impulse to apply (N m s) /// @param inMaxLambda Maximum angular impulse to apply (N m s) inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda) { // Lagrange multiplier is: // // lambda = -K^-1 (J v + b) float lambda = mEffectiveMass * (inWorldSpaceAxis.Dot(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity()) - mSpringPart.GetBias(mTotalLambda)); float new_lambda = Clamp(mTotalLambda + lambda, inMinLambda, inMaxLambda); // Clamp impulse lambda = new_lambda - mTotalLambda; // Lambda potentially got clamped, calculate the new impulse to apply mTotalLambda = new_lambda; // Store accumulated impulse return ApplyVelocityStep(ioBody1, ioBody2, lambda); } /// Return lagrange multiplier float GetTotalLambda() const { return mTotalLambda; } /// Iteratively update the position constraint. Makes sure C(...) == 0. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inC Value of the constraint equation (C) /// @param inBaumgarte Baumgarte constant (fraction of the error to correct) inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const { // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint if (inC != 0.0f && !mSpringPart.IsActive()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out float lambda = -mEffectiveMass * inBaumgarte * inC; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) ioBody1.SubRotationStep(lambda * mInvI1_Axis); if (ioBody2.IsDynamic()) ioBody2.AddRotationStep(lambda * mInvI2_Axis); return true; } return false; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Vec3 mInvI1_Axis; Vec3 mInvI2_Axis; float mEffectiveMass = 0.0f; SpringPart mSpringPart; float mTotalLambda = 0.0f; }; JPH_NAMESPACE_END