layout(std140) uniform TonemapData { //ubo:0
	float exposure;
	float white;
	int tonemapper;
	int pad;

	int pad2;
	float brightness;
	float contrast;
	float saturation;
};

// This expects 0-1 range input.
vec3 linear_to_srgb(vec3 color) {
	//color = clamp(color, vec3(0.0), vec3(1.0));
	//const vec3 a = vec3(0.055f);
	//return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
	// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
	return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
}

// This expects 0-1 range input, outside that range it behaves poorly.
vec3 srgb_to_linear(vec3 color) {
	// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
	return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
}

#ifdef APPLY_TONEMAPPING

// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float p_white) {
	float white_squared = p_white * p_white;
	vec3 white_squared_color = white_squared * color;
	// Equivalent to color * (1 + color / white_squared) / (1 + color)
	return (white_squared_color + color * color) / (white_squared_color + white_squared);
}

vec3 tonemap_filmic(vec3 color, float p_white) {
	// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
	// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
	// has no effect on the curve's general shape or visual properties
	const float exposure_bias = 2.0f;
	const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
	const float B = 0.30f * exposure_bias;
	const float C = 0.10f;
	const float D = 0.20f;
	const float E = 0.01f;
	const float F = 0.30f;

	vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
	float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;

	return color_tonemapped / p_white_tonemapped;
}

// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float p_white) {
	const float exposure_bias = 1.8f;
	const float A = 0.0245786f;
	const float B = 0.000090537f;
	const float C = 0.983729f;
	const float D = 0.432951f;
	const float E = 0.238081f;

	// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
	const mat3 rgb_to_rrt = mat3(
			vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
			vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
			vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));

	const mat3 odt_to_rgb = mat3(
			vec3(1.60475f, -0.53108f, -0.07367f),
			vec3(-0.10208f, 1.10813f, -0.00605f),
			vec3(-0.00327f, -0.07276f, 1.07602f));

	color *= rgb_to_rrt;
	vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
	color_tonemapped *= odt_to_rgb;

	p_white *= exposure_bias;
	float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);

	return color_tonemapped / p_white_tonemapped;
}

// Polynomial approximation of EaryChow's AgX sigmoid curve.
// x must be within the range [0.0, 1.0]
vec3 agx_contrast_approx(vec3 x) {
	// Generated with Excel trendline
	// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
	// Additional padding values were added to give correct intersections at 0.0 and 1.0
	// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
	vec3 x2 = x * x;
	vec3 x4 = x2 * x2;
	return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
}

// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
vec3 tonemap_agx(vec3 color) {
	// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
	const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
			0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
			0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
			0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);

	// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
	const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
			1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
			-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
			-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);

	// LOG2_MIN      = -10.0
	// LOG2_MAX      =  +6.5
	// MIDDLE_GRAY   =  0.18
	const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
	const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)

	// Large negative values in one channel and large positive values in other
	// channels can result in a colour that appears darker and more saturated than
	// desired after passing it through the inset matrix. For this reason, it is
	// best to prevent negative input values.
	// This is done before the Rec. 2020 transform to allow the Rec. 2020
	// transform to be combined with the AgX inset matrix. This results in a loss
	// of color information that could be correctly interpreted within the
	// Rec. 2020 color space as positive RGB values, but it is less common for Godot
	// to provide this function with negative sRGB values and therefore not worth
	// the performance cost of an additional matrix multiplication.
	// A value of 2e-10 intentionally introduces insignificant error to prevent
	// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
	// the matrix transform.
	color = max(color, 2e-10);

	// Do AGX in rec2020 to match Blender and then apply inset matrix.
	color = srgb_to_rec2020_agx_inset_matrix * color;

	// Log2 space encoding.
	// Must be clamped because agx_contrast_approx may not work
	// well with values outside of the range [0.0, 1.0]
	color = clamp(log2(color), min_ev, max_ev);
	color = (color - min_ev) / (max_ev - min_ev);

	// Apply sigmoid function approximation.
	color = agx_contrast_approx(color);

	// Convert back to linear before applying outset matrix.
	color = pow(color, vec3(2.4));

	// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
	color = agx_outset_rec2020_to_srgb_matrix * color;

	// Blender's lusRGB.compensate_low_side is too complex for this shader, so
	// simply return the color, even if it has negative components. These negative
	// components may be useful for subsequent color adjustments.
	return color;
}

#define TONEMAPPER_LINEAR 0
#define TONEMAPPER_REINHARD 1
#define TONEMAPPER_FILMIC 2
#define TONEMAPPER_ACES 3
#define TONEMAPPER_AGX 4

vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR
	// Ensure color values passed to tonemappers are positive.
	// They can be negative in the case of negative lights, which leads to undesired behavior.
	if (tonemapper == TONEMAPPER_LINEAR) {
		return color;
	} else if (tonemapper == TONEMAPPER_REINHARD) {
		return tonemap_reinhard(max(vec3(0.0f), color), p_white);
	} else if (tonemapper == TONEMAPPER_FILMIC) {
		return tonemap_filmic(max(vec3(0.0f), color), p_white);
	} else if (tonemapper == TONEMAPPER_ACES) {
		return tonemap_aces(max(vec3(0.0f), color), p_white);
	} else { // TONEMAPPER_AGX
		return tonemap_agx(color);
	}
}

#endif // APPLY_TONEMAPPING