<?xml version="1.0" encoding="UTF-8" ?> <class name="AABB" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> A 3D axis-aligned bounding box. </brief_description> <description> The [AABB] built-in [Variant] type represents an axis-aligned bounding box in a 3D space. It is defined by its [member position] and [member size], which are [Vector3]. It is frequently used for fast overlap tests (see [method intersects]). Although [AABB] itself is axis-aligned, it can be combined with [Transform3D] to represent a rotated or skewed bounding box. It uses floating-point coordinates. The 2D counterpart to [AABB] is [Rect2]. There is no version of [AABB] that uses integer coordinates. [b]Note:[/b] Negative values for [member size] are not supported. With negative size, most [AABB] methods do not work correctly. Use [method abs] to get an equivalent [AABB] with a non-negative size. [b]Note:[/b] In a boolean context, a [AABB] evaluates to [code]false[/code] if both [member position] and [member size] are zero (equal to [constant Vector3.ZERO]). Otherwise, it always evaluates to [code]true[/code]. </description> <tutorials> <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link> <link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link> <link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link> </tutorials> <constructors> <constructor name="AABB"> <return type="AABB" /> <description> Constructs an [AABB] with its [member position] and [member size] set to [constant Vector3.ZERO]. </description> </constructor> <constructor name="AABB"> <return type="AABB" /> <param index="0" name="from" type="AABB" /> <description> Constructs an [AABB] as a copy of the given [AABB]. </description> </constructor> <constructor name="AABB"> <return type="AABB" /> <param index="0" name="position" type="Vector3" /> <param index="1" name="size" type="Vector3" /> <description> Constructs an [AABB] by [param position] and [param size]. </description> </constructor> </constructors> <methods> <method name="abs" qualifiers="const"> <return type="AABB" /> <description> Returns an [AABB] equivalent to this bounding box, with its width, height, and depth modified to be non-negative values. [codeblocks] [gdscript] var box = AABB(Vector3(5, 0, 5), Vector3(-20, -10, -5)) var absolute = box.abs() print(absolute.position) # Prints (-15, -10, 0) print(absolute.size) # Prints (20, 10, 5) [/gdscript] [csharp] var box = new Aabb(new Vector3(5, 0, 5), new Vector3(-20, -10, -5)); var absolute = box.Abs(); GD.Print(absolute.Position); // Prints (-15, -10, 0) GD.Print(absolute.Size); // Prints (20, 10, 5) [/csharp] [/codeblocks] [b]Note:[/b] It's recommended to use this method when [member size] is negative, as most other methods in Godot assume that the [member size]'s components are greater than [code]0[/code]. </description> </method> <method name="encloses" qualifiers="const"> <return type="bool" /> <param index="0" name="with" type="AABB" /> <description> Returns [code]true[/code] if this bounding box [i]completely[/i] encloses the [param with] box. The edges of both boxes are included. [codeblocks] [gdscript] var a = AABB(Vector3(0, 0, 0), Vector3(4, 4, 4)) var b = AABB(Vector3(1, 1, 1), Vector3(3, 3, 3)) var c = AABB(Vector3(2, 2, 2), Vector3(8, 8, 8)) print(a.encloses(a)) # Prints true print(a.encloses(b)) # Prints true print(a.encloses(c)) # Prints false [/gdscript] [csharp] var a = new Aabb(new Vector3(0, 0, 0), new Vector3(4, 4, 4)); var b = new Aabb(new Vector3(1, 1, 1), new Vector3(3, 3, 3)); var c = new Aabb(new Vector3(2, 2, 2), new Vector3(8, 8, 8)); GD.Print(a.Encloses(a)); // Prints True GD.Print(a.Encloses(b)); // Prints True GD.Print(a.Encloses(c)); // Prints False [/csharp] [/codeblocks] </description> </method> <method name="expand" qualifiers="const"> <return type="AABB" /> <param index="0" name="to_point" type="Vector3" /> <description> Returns a copy of this bounding box expanded to align the edges with the given [param to_point], if necessary. [codeblocks] [gdscript] var box = AABB(Vector3(0, 0, 0), Vector3(5, 2, 5)) box = box.expand(Vector3(10, 0, 0)) print(box.position) # Prints (0, 0, 0) print(box.size) # Prints (10, 2, 5) box = box.expand(Vector3(-5, 0, 5)) print(box.position) # Prints (-5, 0, 0) print(box.size) # Prints (15, 2, 5) [/gdscript] [csharp] var box = new Aabb(new Vector3(0, 0, 0), new Vector3(5, 2, 5)); box = box.Expand(new Vector3(10, 0, 0)); GD.Print(box.Position); // Prints (0, 0, 0) GD.Print(box.Size); // Prints (10, 2, 5) box = box.Expand(new Vector3(-5, 0, 5)); GD.Print(box.Position); // Prints (-5, 0, 0) GD.Print(box.Size); // Prints (15, 2, 5) [/csharp] [/codeblocks] </description> </method> <method name="get_center" qualifiers="const"> <return type="Vector3" /> <description> Returns the center point of the bounding box. This is the same as [code]position + (size / 2.0)[/code]. </description> </method> <method name="get_endpoint" qualifiers="const"> <return type="Vector3" /> <param index="0" name="idx" type="int" /> <description> Returns the position of one of the 8 vertices that compose this bounding box. With a [param idx] of [code]0[/code] this is the same as [member position], and a [param idx] of [code]7[/code] is the same as [member end]. </description> </method> <method name="get_longest_axis" qualifiers="const"> <return type="Vector3" /> <description> Returns the longest normalized axis of this bounding box's [member size], as a [Vector3] ([constant Vector3.RIGHT], [constant Vector3.UP], or [constant Vector3.BACK]). [codeblocks] [gdscript] var box = AABB(Vector3(0, 0, 0), Vector3(2, 4, 8)) print(box.get_longest_axis()) # Prints (0, 0, 1) print(box.get_longest_axis_index()) # Prints 2 print(box.get_longest_axis_size()) # Prints 8 [/gdscript] [csharp] var box = new Aabb(new Vector3(0, 0, 0), new Vector3(2, 4, 8)); GD.Print(box.GetLongestAxis()); // Prints (0, 0, 1) GD.Print(box.GetLongestAxisIndex()); // Prints 2 GD.Print(box.GetLongestAxisSize()); // Prints 8 [/csharp] [/codeblocks] See also [method get_longest_axis_index] and [method get_longest_axis_size]. </description> </method> <method name="get_longest_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the index to the longest axis of this bounding box's [member size] (see [constant Vector3.AXIS_X], [constant Vector3.AXIS_Y], and [constant Vector3.AXIS_Z]). For an example, see [method get_longest_axis]. </description> </method> <method name="get_longest_axis_size" qualifiers="const"> <return type="float" /> <description> Returns the longest dimension of this bounding box's [member size]. For an example, see [method get_longest_axis]. </description> </method> <method name="get_shortest_axis" qualifiers="const"> <return type="Vector3" /> <description> Returns the shortest normalized axis of this bounding box's [member size], as a [Vector3] ([constant Vector3.RIGHT], [constant Vector3.UP], or [constant Vector3.BACK]). [codeblocks] [gdscript] var box = AABB(Vector3(0, 0, 0), Vector3(2, 4, 8)) print(box.get_shortest_axis()) # Prints (1, 0, 0) print(box.get_shortest_axis_index()) # Prints 0 print(box.get_shortest_axis_size()) # Prints 2 [/gdscript] [csharp] var box = new Aabb(new Vector3(0, 0, 0), new Vector3(2, 4, 8)); GD.Print(box.GetShortestAxis()); // Prints (1, 0, 0) GD.Print(box.GetShortestAxisIndex()); // Prints 0 GD.Print(box.GetShortestAxisSize()); // Prints 2 [/csharp] [/codeblocks] See also [method get_shortest_axis_index] and [method get_shortest_axis_size]. </description> </method> <method name="get_shortest_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the index to the shortest axis of this bounding box's [member size] (see [constant Vector3.AXIS_X], [constant Vector3.AXIS_Y], and [constant Vector3.AXIS_Z]). For an example, see [method get_shortest_axis]. </description> </method> <method name="get_shortest_axis_size" qualifiers="const"> <return type="float" /> <description> Returns the shortest dimension of this bounding box's [member size]. For an example, see [method get_shortest_axis]. </description> </method> <method name="get_support" qualifiers="const"> <return type="Vector3" /> <param index="0" name="dir" type="Vector3" /> <description> Returns the vertex's position of this bounding box that's the farthest in the given direction. This point is commonly known as the support point in collision detection algorithms. </description> </method> <method name="get_volume" qualifiers="const"> <return type="float" /> <description> Returns the bounding box's volume. This is equivalent to [code]size.x * size.y * size.z[/code]. See also [method has_volume]. </description> </method> <method name="grow" qualifiers="const"> <return type="AABB" /> <param index="0" name="by" type="float" /> <description> Returns a copy of this bounding box extended on all sides by the given amount [param by]. A negative amount shrinks the box instead. [codeblocks] [gdscript] var a = AABB(Vector3(4, 4, 4), Vector3(8, 8, 8)).grow(4) print(a.position) # Prints (0, 0, 0) print(a.size) # Prints (16, 16, 16) var b = AABB(Vector3(0, 0, 0), Vector3(8, 4, 2)).grow(2) print(b.position) # Prints (-2, -2, -2) print(b.size) # Prints (12, 8, 6) [/gdscript] [csharp] var a = new Aabb(new Vector3(4, 4, 4), new Vector3(8, 8, 8)).Grow(4); GD.Print(a.Position); // Prints (0, 0, 0) GD.Print(a.Size); // Prints (16, 16, 16) var b = new Aabb(new Vector3(0, 0, 0), new Vector3(8, 4, 2)).Grow(2); GD.Print(b.Position); // Prints (-2, -2, -2) GD.Print(b.Size); // Prints (12, 8, 6) [/csharp] [/codeblocks] </description> </method> <method name="has_point" qualifiers="const"> <return type="bool" /> <param index="0" name="point" type="Vector3" /> <description> Returns [code]true[/code] if the bounding box contains the given [param point]. By convention, points exactly on the right, top, and front sides are [b]not[/b] included. [b]Note:[/b] This method is not reliable for [AABB] with a [i]negative[/i] [member size]. Use [method abs] first to get a valid bounding box. </description> </method> <method name="has_surface" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this bounding box has a surface or a length, that is, at least one component of [member size] is greater than [code]0[/code]. Otherwise, returns [code]false[/code]. </description> </method> <method name="has_volume" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this bounding box's width, height, and depth are all positive. See also [method get_volume]. </description> </method> <method name="intersection" qualifiers="const"> <return type="AABB" /> <param index="0" name="with" type="AABB" /> <description> Returns the intersection between this bounding box and [param with]. If the boxes do not intersect, returns an empty [AABB]. If the boxes intersect at the edge, returns a flat [AABB] with no volume (see [method has_surface] and [method has_volume]). [codeblocks] [gdscript] var box1 = AABB(Vector3(0, 0, 0), Vector3(5, 2, 8)) var box2 = AABB(Vector3(2, 0, 2), Vector3(8, 4, 4)) var intersection = box1.intersection(box2) print(intersection.position) # Prints (2, 0, 2) print(intersection.size) # Prints (3, 2, 4) [/gdscript] [csharp] var box1 = new Aabb(new Vector3(0, 0, 0), new Vector3(5, 2, 8)); var box2 = new Aabb(new Vector3(2, 0, 2), new Vector3(8, 4, 4)); var intersection = box1.Intersection(box2); GD.Print(intersection.Position); // Prints (2, 0, 2) GD.Print(intersection.Size); // Prints (3, 2, 4) [/csharp] [/codeblocks] [b]Note:[/b] If you only need to know whether two bounding boxes are intersecting, use [method intersects], instead. </description> </method> <method name="intersects" qualifiers="const"> <return type="bool" /> <param index="0" name="with" type="AABB" /> <description> Returns [code]true[/code] if this bounding box overlaps with the box [param with]. The edges of both boxes are [i]always[/i] excluded. </description> </method> <method name="intersects_plane" qualifiers="const"> <return type="bool" /> <param index="0" name="plane" type="Plane" /> <description> Returns [code]true[/code] if this bounding box is on both sides of the given [param plane]. </description> </method> <method name="intersects_ray" qualifiers="const"> <return type="Variant" /> <param index="0" name="from" type="Vector3" /> <param index="1" name="dir" type="Vector3" /> <description> Returns the first point where this bounding box and the given ray intersect, as a [Vector3]. If no intersection occurs, returns [code]null[/code]. The ray begin at [param from], faces [param dir] and extends towards infinity. </description> </method> <method name="intersects_segment" qualifiers="const"> <return type="Variant" /> <param index="0" name="from" type="Vector3" /> <param index="1" name="to" type="Vector3" /> <description> Returns the first point where this bounding box and the given segment intersect, as a [Vector3]. If no intersection occurs, returns [code]null[/code]. The segment begins at [param from] and ends at [param to]. </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="aabb" type="AABB" /> <description> Returns [code]true[/code] if this bounding box and [param aabb] are approximately equal, by calling [method Vector2.is_equal_approx] on the [member position] and the [member size]. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this bounding box's values are finite, by calling [method Vector2.is_finite] on the [member position] and the [member size]. </description> </method> <method name="merge" qualifiers="const"> <return type="AABB" /> <param index="0" name="with" type="AABB" /> <description> Returns an [AABB] that encloses both this bounding box and [param with] around the edges. See also [method encloses]. </description> </method> </methods> <members> <member name="end" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> The ending point. This is usually the corner on the top-right and forward of the bounding box, and is equivalent to [code]position + size[/code]. Setting this point affects the [member size]. </member> <member name="position" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> The origin point. This is usually the corner on the bottom-left and back of the bounding box. </member> <member name="size" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> The bounding box's width, height, and depth starting from [member position]. Setting this value also affects the [member end] point. [b]Note:[/b] It's recommended setting the width, height, and depth to non-negative values. This is because most methods in Godot assume that the [member position] is the bottom-left-back corner, and the [member end] is the top-right-forward corner. To get an equivalent bounding box with non-negative size, use [method abs]. </member> </members> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="AABB" /> <description> Returns [code]true[/code] if the [member position] or [member size] of both bounding boxes are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="AABB" /> <param index="0" name="right" type="Transform3D" /> <description> Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not). [code]aabb * transform[/code] is equivalent to [code]transform.inverse() * aabb[/code]. See [method Transform3D.inverse]. For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * aabb[/code] can be used instead. See [method Transform3D.affine_inverse]. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="AABB" /> <description> Returns [code]true[/code] if both [member position] and [member size] of the bounding boxes are exactly equal, respectively. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> </operators> </class>