/**************************************************************************/ /* texture_loader_dds.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "texture_loader_dds.h" #include "dds_enums.h" #include "core/io/file_access.h" #include "core/io/file_access_memory.h" #include "scene/resources/image_texture.h" DDSFormat _dxgi_to_dds_format(uint32_t p_dxgi_format) { switch (p_dxgi_format) { case DXGI_R32G32B32A32_FLOAT: { return DDS_RGBA32F; } case DXGI_R32G32B32_FLOAT: { return DDS_RGB32F; } case DXGI_R16G16B16A16_FLOAT: { return DDS_RGBA16F; } case DXGI_R32G32_FLOAT: { return DDS_RG32F; } case DXGI_R10G10B10A2_UNORM: { return DDS_RGB10A2; } case DXGI_R8G8B8A8_UNORM: case DXGI_R8G8B8A8_UNORM_SRGB: { return DDS_RGBA8; } case DXGI_R16G16_FLOAT: { return DDS_RG16F; } case DXGI_R32_FLOAT: { return DDS_R32F; } case DXGI_R8_UNORM: case DXGI_A8_UNORM: { return DDS_LUMINANCE; } case DXGI_R16_FLOAT: { return DDS_R16F; } case DXGI_R8G8_UNORM: { return DDS_LUMINANCE_ALPHA; } case DXGI_R9G9B9E5: { return DDS_RGB9E5; } case DXGI_BC1_UNORM: case DXGI_BC1_UNORM_SRGB: { return DDS_DXT1; } case DXGI_BC2_UNORM: case DXGI_BC2_UNORM_SRGB: { return DDS_DXT3; } case DXGI_BC3_UNORM: case DXGI_BC3_UNORM_SRGB: { return DDS_DXT5; } case DXGI_BC4_UNORM: { return DDS_ATI1; } case DXGI_BC5_UNORM: { return DDS_ATI2; } case DXGI_B5G6R5_UNORM: { return DDS_BGR565; } case DXGI_B5G5R5A1_UNORM: { return DDS_BGR5A1; } case DXGI_B8G8R8A8_UNORM: { return DDS_BGRA8; } case DXGI_BC6H_UF16: { return DDS_BC6U; } case DXGI_BC6H_SF16: { return DDS_BC6S; } case DXGI_BC7_UNORM: case DXGI_BC7_UNORM_SRGB: { return DDS_BC7; } case DXGI_B4G4R4A4_UNORM: { return DDS_BGRA4; } default: { return DDS_MAX; } } } static Ref _dds_load_layer(Ref p_file, DDSFormat p_dds_format, uint32_t p_width, uint32_t p_height, uint32_t p_mipmaps, uint32_t p_pitch, uint32_t p_flags, Vector &r_src_data) { const DDSFormatInfo &info = dds_format_info[p_dds_format]; uint32_t w = p_width; uint32_t h = p_height; if (info.compressed) { // BC compressed. w += w % info.divisor; h += h % info.divisor; if (w != p_width) { WARN_PRINT(vformat("%s: DDS width '%d' is not divisible by %d. This is not allowed as per the DDS specification, attempting to load anyway.", p_file->get_path(), p_width, info.divisor)); } if (h != p_height) { WARN_PRINT(vformat("%s: DDS height '%d' is not divisible by %d. This is not allowed as per the DDS specification, attempting to load anyway.", p_file->get_path(), p_height, info.divisor)); } uint32_t size = MAX(info.divisor, w) / info.divisor * MAX(info.divisor, h) / info.divisor * info.block_size; if (p_flags & DDSD_LINEARSIZE) { ERR_FAIL_COND_V_MSG(size != p_pitch, Ref(), "DDS header flags specify that a linear size of the top-level image is present, but the specified size does not match the expected value."); } else { ERR_FAIL_COND_V_MSG(p_pitch != 0, Ref(), "DDS header flags specify that no linear size will given for the top-level image, but a non-zero linear size value is present in the header."); } for (uint32_t i = 1; i < p_mipmaps; i++) { w = MAX(1u, w >> 1); h = MAX(1u, h >> 1); uint32_t bsize = MAX(info.divisor, w) / info.divisor * MAX(info.divisor, h) / info.divisor * info.block_size; size += bsize; } r_src_data.resize(size); uint8_t *wb = r_src_data.ptrw(); p_file->get_buffer(wb, size); } else { // Generic uncompressed. uint32_t size = p_width * p_height * info.block_size; for (uint32_t i = 1; i < p_mipmaps; i++) { w = MAX(1u, w >> 1); h = MAX(1u, h >> 1); size += w * h * info.block_size; } // Calculate the space these formats will take up after decoding. switch (p_dds_format) { case DDS_BGR565: size = size * 3 / 2; break; case DDS_BGR5A1: case DDS_BGRA4: case DDS_B2GR3A8: case DDS_LUMINANCE_ALPHA_4: size = size * 2; break; case DDS_B2GR3: size = size * 3; break; default: break; } r_src_data.resize(size); uint8_t *wb = r_src_data.ptrw(); p_file->get_buffer(wb, size); switch (p_dds_format) { case DDS_BGR5A1: { // To RGBA8. int colcount = size / 4; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i * 2; int dst_ofs = i * 4; uint8_t a = wb[src_ofs + 1] & 0x80; uint8_t b = wb[src_ofs] & 0x1F; uint8_t g = (wb[src_ofs] >> 5) | ((wb[src_ofs + 1] & 0x3) << 3); uint8_t r = (wb[src_ofs + 1] >> 2) & 0x1F; wb[dst_ofs + 0] = r << 3; wb[dst_ofs + 1] = g << 3; wb[dst_ofs + 2] = b << 3; wb[dst_ofs + 3] = a ? 255 : 0; } } break; case DDS_BGR565: { // To RGB8. int colcount = size / 3; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i * 2; int dst_ofs = i * 3; uint8_t b = wb[src_ofs] & 0x1F; uint8_t g = (wb[src_ofs] >> 5) | ((wb[src_ofs + 1] & 0x7) << 3); uint8_t r = wb[src_ofs + 1] >> 3; wb[dst_ofs + 0] = r << 3; wb[dst_ofs + 1] = g << 2; wb[dst_ofs + 2] = b << 3; } } break; case DDS_BGRA4: { // To RGBA8. int colcount = size / 4; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i * 2; int dst_ofs = i * 4; uint8_t b = wb[src_ofs] & 0x0F; uint8_t g = wb[src_ofs] & 0xF0; uint8_t r = wb[src_ofs + 1] & 0x0F; uint8_t a = wb[src_ofs + 1] & 0xF0; wb[dst_ofs] = (r << 4) | r; wb[dst_ofs + 1] = g | (g >> 4); wb[dst_ofs + 2] = (b << 4) | b; wb[dst_ofs + 3] = a | (a >> 4); } } break; case DDS_B2GR3: { // To RGB8. int colcount = size / 3; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i; int dst_ofs = i * 3; uint8_t b = (wb[src_ofs] & 0x3) << 6; uint8_t g = (wb[src_ofs] & 0x1C) << 3; uint8_t r = (wb[src_ofs] & 0xE0); wb[dst_ofs] = r; wb[dst_ofs + 1] = g; wb[dst_ofs + 2] = b; } } break; case DDS_B2GR3A8: { // To RGBA8. int colcount = size / 4; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i * 2; int dst_ofs = i * 4; uint8_t b = (wb[src_ofs] & 0x3) << 6; uint8_t g = (wb[src_ofs] & 0x1C) << 3; uint8_t r = (wb[src_ofs] & 0xE0); uint8_t a = wb[src_ofs + 1]; wb[dst_ofs] = r; wb[dst_ofs + 1] = g; wb[dst_ofs + 2] = b; wb[dst_ofs + 3] = a; } } break; case DDS_RGB10A2: { // To RGBA8. int colcount = size / 4; for (int i = 0; i < colcount; i++) { int ofs = i * 4; uint32_t w32 = uint32_t(wb[ofs + 0]) | (uint32_t(wb[ofs + 1]) << 8) | (uint32_t(wb[ofs + 2]) << 16) | (uint32_t(wb[ofs + 3]) << 24); // This method follows the 'standard' way of decoding 10-bit dds files, // which means the ones created with DirectXTex will be loaded incorrectly. uint8_t a = (w32 & 0xc0000000) >> 24; uint8_t r = (w32 & 0x3ff) >> 2; uint8_t g = (w32 & 0xffc00) >> 12; uint8_t b = (w32 & 0x3ff00000) >> 22; wb[ofs + 0] = r; wb[ofs + 1] = g; wb[ofs + 2] = b; wb[ofs + 3] = a == 0xc0 ? 255 : a; // 0xc0 should be opaque. } } break; case DDS_BGR10A2: { // To RGBA8. int colcount = size / 4; for (int i = 0; i < colcount; i++) { int ofs = i * 4; uint32_t w32 = uint32_t(wb[ofs + 0]) | (uint32_t(wb[ofs + 1]) << 8) | (uint32_t(wb[ofs + 2]) << 16) | (uint32_t(wb[ofs + 3]) << 24); // This method follows the 'standard' way of decoding 10-bit dds files, // which means the ones created with DirectXTex will be loaded incorrectly. uint8_t a = (w32 & 0xc0000000) >> 24; uint8_t r = (w32 & 0x3ff00000) >> 22; uint8_t g = (w32 & 0xffc00) >> 12; uint8_t b = (w32 & 0x3ff) >> 2; wb[ofs + 0] = r; wb[ofs + 1] = g; wb[ofs + 2] = b; wb[ofs + 3] = a == 0xc0 ? 255 : a; // 0xc0 should be opaque. } } break; // Channel-swapped. case DDS_BGRA8: { // To RGBA8. int colcount = size / 4; for (int i = 0; i < colcount; i++) { SWAP(wb[i * 4 + 0], wb[i * 4 + 2]); } } break; case DDS_BGR8: { // To RGB8. int colcount = size / 3; for (int i = 0; i < colcount; i++) { SWAP(wb[i * 3 + 0], wb[i * 3 + 2]); } } break; // Grayscale. case DDS_LUMINANCE_ALPHA_4: { // To LA8. int colcount = size / 2; for (int i = colcount - 1; i >= 0; i--) { int src_ofs = i; int dst_ofs = i * 2; uint8_t l = wb[src_ofs] & 0x0F; uint8_t a = wb[src_ofs] & 0xF0; wb[dst_ofs] = (l << 4) | l; wb[dst_ofs + 1] = a | (a >> 4); } } break; default: { } } } return memnew(Image(p_width, p_height, p_mipmaps > 1, info.format, r_src_data)); } static Vector> _dds_load_images(Ref p_f, DDSFormat p_dds_format, uint32_t p_width, uint32_t p_height, uint32_t p_mipmaps, uint32_t p_pitch, uint32_t p_flags, uint32_t p_layer_count) { Vector src_data; Vector> images; images.resize(p_layer_count); for (uint32_t i = 0; i < p_layer_count; i++) { images.write[i] = _dds_load_layer(p_f, p_dds_format, p_width, p_height, p_mipmaps, p_pitch, p_flags, src_data); } return images; } static Ref _dds_create_texture(const Vector> &p_images, uint32_t p_dds_type, uint32_t p_width, uint32_t p_height, uint32_t p_layer_count, uint32_t p_mipmaps, Error *r_error) { if ((p_dds_type & DDST_TYPE_MASK) == DDST_2D) { if (p_dds_type & DDST_ARRAY) { Ref texture; texture.instantiate(); texture->create_from_images(p_images); if (r_error) { *r_error = OK; } return texture; } else { if (r_error) { *r_error = OK; } return ImageTexture::create_from_image(p_images[0]); } } else if ((p_layer_count & DDST_TYPE_MASK) == DDST_CUBEMAP) { ERR_FAIL_COND_V(p_layer_count % 6 != 0, Ref()); if (p_dds_type & DDST_ARRAY) { Ref texture; texture.instantiate(); texture->create_from_images(p_images); if (r_error) { *r_error = OK; } return texture; } else { Ref texture; texture.instantiate(); texture->create_from_images(p_images); if (r_error) { *r_error = OK; } return texture; } } else if ((p_dds_type & DDST_TYPE_MASK) == DDST_3D) { Ref texture; texture.instantiate(); texture->create(p_images[0]->get_format(), p_width, p_height, p_layer_count, p_mipmaps > 1, p_images); if (r_error) { *r_error = OK; } return texture; } return Ref(); } static Ref _dds_create_texture_from_images(const Vector> &p_images, DDSFormat p_dds_format, uint32_t p_width, uint32_t p_height, uint32_t p_mipmaps, uint32_t p_pitch, uint32_t p_flags, uint32_t p_layer_count, uint32_t p_dds_type, Error *r_error) { return _dds_create_texture(p_images, p_dds_type, p_width, p_height, p_layer_count, p_mipmaps, r_error); } static Vector> _dds_load_images_from_buffer(Ref p_f, DDSFormat &r_dds_format, uint32_t &r_width, uint32_t &r_height, uint32_t &r_mipmaps, uint32_t &r_pitch, uint32_t &r_flags, uint32_t &r_layer_count, uint32_t &r_dds_type, const String &p_path = "") { ERR_FAIL_COND_V_MSG(p_f.is_null(), Vector>(), vformat("Empty DDS texture file.")); ERR_FAIL_COND_V_MSG(!p_f->get_length(), Vector>(), vformat("Empty DDS texture file.")); uint32_t magic = p_f->get_32(); uint32_t hsize = p_f->get_32(); r_flags = p_f->get_32(); r_height = p_f->get_32(); r_width = p_f->get_32(); r_pitch = p_f->get_32(); uint32_t depth = p_f->get_32(); r_mipmaps = p_f->get_32(); // Skip reserved. for (int i = 0; i < 11; i++) { p_f->get_32(); } // Validate. // We don't check DDSD_CAPS or DDSD_PIXELFORMAT, as they're mandatory when writing, // but non-mandatory when reading (as some writers don't set them). if (magic != DDS_MAGIC || hsize != 124) { ERR_FAIL_V_MSG(Vector>(), vformat("Invalid or unsupported DDS texture file '%s'.", p_path)); } /* uint32_t format_size = */ p_f->get_32(); uint32_t format_flags = p_f->get_32(); uint32_t format_fourcc = p_f->get_32(); uint32_t format_rgb_bits = p_f->get_32(); uint32_t format_red_mask = p_f->get_32(); uint32_t format_green_mask = p_f->get_32(); uint32_t format_blue_mask = p_f->get_32(); uint32_t format_alpha_mask = p_f->get_32(); /* uint32_t caps_1 = */ p_f->get_32(); uint32_t caps_2 = p_f->get_32(); /* uint32_t caps_3 = */ p_f->get_32(); /* uint32_t caps_4 = */ p_f->get_32(); // Skip reserved. p_f->get_32(); if (p_f->get_position() < 128) { p_f->seek(128); } r_layer_count = 1; r_dds_type = DDST_2D; if (caps_2 & DDSC2_CUBEMAP) { r_dds_type = DDST_CUBEMAP; r_layer_count *= 6; } else if (caps_2 & DDSC2_VOLUME) { r_dds_type = DDST_3D; r_layer_count = depth; } r_dds_format = DDS_MAX; if (format_flags & DDPF_FOURCC) { // FourCC formats. switch (format_fourcc) { case DDFCC_DXT1: { r_dds_format = DDS_DXT1; } break; case DDFCC_DXT2: case DDFCC_DXT3: { r_dds_format = DDS_DXT3; } break; case DDFCC_DXT4: case DDFCC_DXT5: { r_dds_format = DDS_DXT5; } break; case DDFCC_ATI1: case DDFCC_BC4U: { r_dds_format = DDS_ATI1; } break; case DDFCC_ATI2: case DDFCC_BC5U: case DDFCC_A2XY: { r_dds_format = DDS_ATI2; } break; case DDFCC_R16F: { r_dds_format = DDS_R16F; } break; case DDFCC_RG16F: { r_dds_format = DDS_RG16F; } break; case DDFCC_RGBA16F: { r_dds_format = DDS_RGBA16F; } break; case DDFCC_R32F: { r_dds_format = DDS_R32F; } break; case DDFCC_RG32F: { r_dds_format = DDS_RG32F; } break; case DDFCC_RGBA32F: { r_dds_format = DDS_RGBA32F; } break; case DDFCC_DX10: { uint32_t dxgi_format = p_f->get_32(); uint32_t dimension = p_f->get_32(); /* uint32_t misc_flags_1 = */ p_f->get_32(); uint32_t array_size = p_f->get_32(); /* uint32_t misc_flags_2 = */ p_f->get_32(); if (dimension == DX10D_3D) { r_dds_type = DDST_3D; r_layer_count = depth; } if (array_size > 1) { r_layer_count *= array_size; r_dds_type |= DDST_ARRAY; } r_dds_format = _dxgi_to_dds_format(dxgi_format); } break; default: { ERR_FAIL_V_MSG(Vector>(), vformat("Unrecognized or unsupported FourCC in DDS '%s'.", p_path)); } } } else if (format_flags & DDPF_RGB) { // Channel-bitmasked formats. if (format_flags & DDPF_ALPHAPIXELS) { // With alpha. if (format_rgb_bits == 32 && format_red_mask == 0xff0000 && format_green_mask == 0xff00 && format_blue_mask == 0xff && format_alpha_mask == 0xff000000) { r_dds_format = DDS_BGRA8; } else if (format_rgb_bits == 32 && format_red_mask == 0xff && format_green_mask == 0xff00 && format_blue_mask == 0xff0000 && format_alpha_mask == 0xff000000) { r_dds_format = DDS_RGBA8; } else if (format_rgb_bits == 16 && format_red_mask == 0x00007c00 && format_green_mask == 0x000003e0 && format_blue_mask == 0x0000001f && format_alpha_mask == 0x00008000) { r_dds_format = DDS_BGR5A1; } else if (format_rgb_bits == 32 && format_red_mask == 0x3ff00000 && format_green_mask == 0xffc00 && format_blue_mask == 0x3ff && format_alpha_mask == 0xc0000000) { r_dds_format = DDS_BGR10A2; } else if (format_rgb_bits == 32 && format_red_mask == 0x3ff && format_green_mask == 0xffc00 && format_blue_mask == 0x3ff00000 && format_alpha_mask == 0xc0000000) { r_dds_format = DDS_RGB10A2; } else if (format_rgb_bits == 16 && format_red_mask == 0xf00 && format_green_mask == 0xf0 && format_blue_mask == 0xf && format_alpha_mask == 0xf000) { r_dds_format = DDS_BGRA4; } else if (format_rgb_bits == 16 && format_red_mask == 0xe0 && format_green_mask == 0x1c && format_blue_mask == 0x3 && format_alpha_mask == 0xff00) { r_dds_format = DDS_B2GR3A8; } } else { // Without alpha. if (format_rgb_bits == 24 && format_red_mask == 0xff0000 && format_green_mask == 0xff00 && format_blue_mask == 0xff) { r_dds_format = DDS_BGR8; } else if (format_rgb_bits == 24 && format_red_mask == 0xff && format_green_mask == 0xff00 && format_blue_mask == 0xff0000) { r_dds_format = DDS_RGB8; } else if (format_rgb_bits == 16 && format_red_mask == 0x0000f800 && format_green_mask == 0x000007e0 && format_blue_mask == 0x0000001f) { r_dds_format = DDS_BGR565; } else if (format_rgb_bits == 8 && format_red_mask == 0xe0 && format_green_mask == 0x1c && format_blue_mask == 0x3) { r_dds_format = DDS_B2GR3; } } } else { // Other formats. if (format_flags & DDPF_ALPHAONLY && format_rgb_bits == 8 && format_alpha_mask == 0xff) { // Alpha only. r_dds_format = DDS_LUMINANCE; } } // Depending on the writer, luminance formats may or may not have the DDPF_RGB or DDPF_LUMINANCE flags defined, // so we check for these formats after everything else failed. if (r_dds_format == DDS_MAX) { if (format_flags & DDPF_ALPHAPIXELS) { // With alpha. if (format_rgb_bits == 16 && format_red_mask == 0xff && format_alpha_mask == 0xff00) { r_dds_format = DDS_LUMINANCE_ALPHA; } else if (format_rgb_bits == 8 && format_red_mask == 0xf && format_alpha_mask == 0xf0) { r_dds_format = DDS_LUMINANCE_ALPHA_4; } } else { // Without alpha. if (format_rgb_bits == 8 && format_red_mask == 0xff) { r_dds_format = DDS_LUMINANCE; } } } // No format detected, error. if (r_dds_format == DDS_MAX) { ERR_FAIL_V_MSG(Vector>(), vformat("Unrecognized or unsupported color layout in DDS '%s'.", p_path)); } if (!(r_flags & DDSD_MIPMAPCOUNT)) { r_mipmaps = 1; } return _dds_load_images(p_f, r_dds_format, r_width, r_height, r_mipmaps, r_pitch, r_flags, r_layer_count); } static Ref _dds_load_from_buffer(Ref p_f, Error *r_error, const String &p_path = "") { if (r_error) { *r_error = ERR_FILE_CORRUPT; } DDSFormat dds_format; uint32_t width = 0, height = 0, mipmaps = 0, pitch = 0, flags = 0, layer_count = 0, dds_type = 0; Vector> images = _dds_load_images_from_buffer(p_f, dds_format, width, height, mipmaps, pitch, flags, layer_count, dds_type, p_path); return _dds_create_texture_from_images(images, dds_format, width, height, mipmaps, pitch, flags, layer_count, dds_type, r_error); } static Ref _dds_load_from_file(const String &p_path, Error *r_error) { if (r_error) { *r_error = ERR_CANT_OPEN; } Error err; Ref f = FileAccess::open(p_path, FileAccess::READ, &err); if (f.is_null()) { return Ref(); } return _dds_load_from_buffer(f, r_error, p_path); } Ref ResourceFormatDDS::load(const String &p_path, const String &p_original_path, Error *r_error, bool p_use_sub_threads, float *r_progress, CacheMode p_cache_mode) { return _dds_load_from_file(p_path, r_error); } void ResourceFormatDDS::get_recognized_extensions(List *p_extensions) const { p_extensions->push_back("dds"); } bool ResourceFormatDDS::handles_type(const String &p_type) const { return ClassDB::is_parent_class(p_type, "Texture"); } String ResourceFormatDDS::get_resource_type(const String &p_path) const { if (p_path.get_extension().to_lower() == "dds") { return "Texture"; } return ""; } Ref load_mem_dds(const uint8_t *p_dds, int p_size) { ERR_FAIL_NULL_V(p_dds, Ref()); ERR_FAIL_COND_V(!p_size, Ref()); Ref memfile; memfile.instantiate(); Error open_memfile_error = memfile->open_custom(p_dds, p_size); ERR_FAIL_COND_V_MSG(open_memfile_error, Ref(), "Could not create memfile for DDS image buffer."); DDSFormat dds_format; uint32_t width, height, mipmaps, pitch, flags, layer_count, dds_type; Vector> images = _dds_load_images_from_buffer(memfile, dds_format, width, height, mipmaps, pitch, flags, layer_count, dds_type); ERR_FAIL_COND_V_MSG(images.is_empty(), Ref(), "Failed to load DDS image."); return images[0]; } ResourceFormatDDS::ResourceFormatDDS() { Image::_dds_mem_loader_func = load_mem_dds; }