// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include #include JPH_NAMESPACE_BEGIN /** Constrains rotation around 2 axis so that it only allows rotation around 1 axis Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.4.1 Constraint equation (eq 87): \f[C = \begin{bmatrix}a_1 \cdot b_2 \\ a_1 \cdot c_2\end{bmatrix}\f] Jacobian (eq 90): \f[J = \begin{bmatrix} 0 & -b_2 \times a_1 & 0 & b_2 \times a_1 \\ 0 & -c_2 \times a_1 & 0 & c2 \times a_1 \end{bmatrix}\f] Used terms (here and below, everything in world space):\n a1 = hinge axis on body 1.\n b2, c2 = axis perpendicular to hinge axis on body 2.\n x1, x2 = center of mass for the bodies.\n v = [v1, w1, v2, w2].\n v1, v2 = linear velocity of body 1 and 2.\n w1, w2 = angular velocity of body 1 and 2.\n M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n b = velocity bias.\n \f$\beta\f$ = baumgarte constant.\n E = identity matrix. **/ class HingeRotationConstraintPart { public: using Vec2 = Vector<2>; using Mat22 = Matrix<2, 2>; private: /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, const Vec2 &inLambda) const { // Apply impulse if delta is not zero if (!inLambda.IsZero()) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1]; if (ioBody1.IsDynamic()) ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(impulse)); if (ioBody2.IsDynamic()) ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(impulse)); return true; } return false; } public: /// Calculate properties used during the functions below inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2) { JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-5f)); JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-5f)); // Calculate hinge axis in world space mA1 = inWorldSpaceHingeAxis1; Vec3 a2 = inWorldSpaceHingeAxis2; float dot = mA1.Dot(a2); if (dot <= 1.0e-3f) { // World space axes are more than 90 degrees apart, get a perpendicular vector in the plane formed by mA1 and a2 as hinge axis until the rotation is less than 90 degrees Vec3 perp = a2 - dot * mA1; if (perp.LengthSq() < 1.0e-6f) { // mA1 ~ -a2, take random perpendicular perp = mA1.GetNormalizedPerpendicular(); } // Blend in a little bit from mA1 so we're less than 90 degrees apart a2 = (0.99f * perp.Normalized() + 0.01f * mA1).Normalized(); } mB2 = a2.GetNormalizedPerpendicular(); mC2 = a2.Cross(mB2); // Calculate properties used during constraint solving mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero(); mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero(); mB2xA1 = mB2.Cross(mA1); mC2xA1 = mC2.Cross(mA1); // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1 Mat44 summed_inv_inertia = mInvI1 + mInvI2; Mat22 inv_effective_mass; inv_effective_mass(0, 0) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1)); inv_effective_mass(0, 1) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1)); inv_effective_mass(1, 0) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1)); inv_effective_mass(1, 1) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1)); if (!mEffectiveMass.SetInversed(inv_effective_mass)) Deactivate(); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass.SetZero(); mTotalLambda.SetZero(); } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2) { // Calculate lagrange multiplier: // // lambda = -K^-1 (J v + b) Vec3 delta_ang = ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity(); Vec2 jv; jv[0] = mB2xA1.Dot(delta_ang); jv[1] = mC2xA1.Dot(delta_ang); Vec2 lambda = mEffectiveMass * jv; // Store accumulated lambda mTotalLambda += lambda; return ApplyVelocityStep(ioBody1, ioBody2, lambda); } /// Iteratively update the position constraint. Makes sure C(...) = 0. inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const { // Constraint needs Axis of body 1 perpendicular to both B and C from body 2 (which are both perpendicular to the Axis of body 2) Vec2 c; c[0] = mA1.Dot(mB2); c[1] = mA1.Dot(mC2); if (!c.IsZero()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out Vec2 lambda = -inBaumgarte * (mEffectiveMass * c); // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1]; if (ioBody1.IsDynamic()) ioBody1.SubRotationStep(mInvI1.Multiply3x3(impulse)); if (ioBody2.IsDynamic()) ioBody2.AddRotationStep(mInvI2.Multiply3x3(impulse)); return true; } return false; } /// Return lagrange multiplier const Vec2 & GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Vec3 mA1; ///< World space hinge axis for body 1 Vec3 mB2; ///< World space perpendiculars of hinge axis for body 2 Vec3 mC2; Mat44 mInvI1; Mat44 mInvI2; Vec3 mB2xA1; Vec3 mC2xA1; Mat22 mEffectiveMass; Vec2 mTotalLambda { Vec2::sZero() }; }; JPH_NAMESPACE_END