// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include #include JPH_NAMESPACE_BEGIN /** Constrains movement on 2 axis @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.3.1 Constraint equation (eq 51): \f[C = \begin{bmatrix} (p_2 - p_1) \cdot n_1 \\ (p_2 - p_1) \cdot n_2\end{bmatrix}\f] Jacobian (transposed) (eq 55): \f[J^T = \begin{bmatrix} -n_1 & -n_2 \\ -(r_1 + u) \times n_1 & -(r_1 + u) \times n_2 \\ n_1 & n_2 \\ r_2 \times n_1 & r_2 \times n_2 \end{bmatrix}\f] Used terms (here and below, everything in world space):\n n1, n2 = constraint axis (normalized).\n p1, p2 = constraint points.\n r1 = p1 - x1.\n r2 = p2 - x2.\n u = x2 + r2 - x1 - r1 = p2 - p1.\n x1, x2 = center of mass for the bodies.\n v = [v1, w1, v2, w2].\n v1, v2 = linear velocity of body 1 and 2.\n w1, w2 = angular velocity of body 1 and 2.\n M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n b = velocity bias.\n \f$\beta\f$ = baumgarte constant. **/ class DualAxisConstraintPart { public: using Vec2 = Vector<2>; using Mat22 = Matrix<2, 2>; private: /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, const Vec2 &inLambda) const { // Apply impulse if delta is not zero if (!inLambda.IsZero()) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P Vec3 impulse = inN1 * inLambda[0] + inN2 * inLambda[1]; if (ioBody1.IsDynamic()) { MotionProperties *mp1 = ioBody1.GetMotionProperties(); mp1->SubLinearVelocityStep(mp1->GetInverseMass() * impulse); mp1->SubAngularVelocityStep(mInvI1_R1PlusUxN1 * inLambda[0] + mInvI1_R1PlusUxN2 * inLambda[1]); } if (ioBody2.IsDynamic()) { MotionProperties *mp2 = ioBody2.GetMotionProperties(); mp2->AddLinearVelocityStep(mp2->GetInverseMass() * impulse); mp2->AddAngularVelocityStep(mInvI2_R2xN1 * inLambda[0] + mInvI2_R2xN2 * inLambda[1]); } return true; } return false; } /// Internal helper function to calculate the lagrange multiplier inline void CalculateLagrangeMultiplier(const Body &inBody1, const Body &inBody2, Vec3Arg inN1, Vec3Arg inN2, Vec2 &outLambda) const { // Calculate lagrange multiplier: // // lambda = -K^-1 (J v + b) Vec3 delta_lin = inBody1.GetLinearVelocity() - inBody2.GetLinearVelocity(); Vec2 jv; jv[0] = inN1.Dot(delta_lin) + mR1PlusUxN1.Dot(inBody1.GetAngularVelocity()) - mR2xN1.Dot(inBody2.GetAngularVelocity()); jv[1] = inN2.Dot(delta_lin) + mR1PlusUxN2.Dot(inBody1.GetAngularVelocity()) - mR2xN2.Dot(inBody2.GetAngularVelocity()); outLambda = mEffectiveMass * jv; } public: /// Calculate properties used during the functions below /// All input vectors are in world space inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1PlusU, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2, Vec3Arg inN1, Vec3Arg inN2) { JPH_ASSERT(inN1.IsNormalized(1.0e-5f)); JPH_ASSERT(inN2.IsNormalized(1.0e-5f)); // Calculate properties used during constraint solving mR1PlusUxN1 = inR1PlusU.Cross(inN1); mR1PlusUxN2 = inR1PlusU.Cross(inN2); mR2xN1 = inR2.Cross(inN1); mR2xN2 = inR2.Cross(inN2); // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1, eq 59 Mat22 inv_effective_mass; if (inBody1.IsDynamic()) { const MotionProperties *mp1 = inBody1.GetMotionProperties(); Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1); mInvI1_R1PlusUxN1 = inv_i1.Multiply3x3(mR1PlusUxN1); mInvI1_R1PlusUxN2 = inv_i1.Multiply3x3(mR1PlusUxN2); inv_effective_mass(0, 0) = mp1->GetInverseMass() + mR1PlusUxN1.Dot(mInvI1_R1PlusUxN1); inv_effective_mass(0, 1) = mR1PlusUxN1.Dot(mInvI1_R1PlusUxN2); inv_effective_mass(1, 0) = mR1PlusUxN2.Dot(mInvI1_R1PlusUxN1); inv_effective_mass(1, 1) = mp1->GetInverseMass() + mR1PlusUxN2.Dot(mInvI1_R1PlusUxN2); } else { JPH_IF_DEBUG(mInvI1_R1PlusUxN1 = Vec3::sNaN();) JPH_IF_DEBUG(mInvI1_R1PlusUxN2 = Vec3::sNaN();) inv_effective_mass = Mat22::sZero(); } if (inBody2.IsDynamic()) { const MotionProperties *mp2 = inBody2.GetMotionProperties(); Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2); mInvI2_R2xN1 = inv_i2.Multiply3x3(mR2xN1); mInvI2_R2xN2 = inv_i2.Multiply3x3(mR2xN2); inv_effective_mass(0, 0) += mp2->GetInverseMass() + mR2xN1.Dot(mInvI2_R2xN1); inv_effective_mass(0, 1) += mR2xN1.Dot(mInvI2_R2xN2); inv_effective_mass(1, 0) += mR2xN2.Dot(mInvI2_R2xN1); inv_effective_mass(1, 1) += mp2->GetInverseMass() + mR2xN2.Dot(mInvI2_R2xN2); } else { JPH_IF_DEBUG(mInvI2_R2xN1 = Vec3::sNaN();) JPH_IF_DEBUG(mInvI2_R2xN2 = Vec3::sNaN();) } if (!mEffectiveMass.SetInversed(inv_effective_mass)) Deactivate(); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass.SetZero(); mTotalLambda.SetZero(); } /// Check if constraint is active inline bool IsActive() const { return !mEffectiveMass.IsZero(); } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses /// All input vectors are in world space inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// All input vectors are in world space inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2) { Vec2 lambda; CalculateLagrangeMultiplier(ioBody1, ioBody2, inN1, inN2, lambda); // Store accumulated lambda mTotalLambda += lambda; return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, lambda); } /// Iteratively update the position constraint. Makes sure C(...) = 0. /// All input vectors are in world space inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inU, Vec3Arg inN1, Vec3Arg inN2, float inBaumgarte) const { Vec2 c; c[0] = inU.Dot(inN1); c[1] = inU.Dot(inN2); if (!c.IsZero()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out Vec2 lambda = -inBaumgarte * (mEffectiveMass * c); // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. Vec3 impulse = inN1 * lambda[0] + inN2 * lambda[1]; if (ioBody1.IsDynamic()) { ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * impulse); ioBody1.SubRotationStep(mInvI1_R1PlusUxN1 * lambda[0] + mInvI1_R1PlusUxN2 * lambda[1]); } if (ioBody2.IsDynamic()) { ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * impulse); ioBody2.AddRotationStep(mInvI2_R2xN1 * lambda[0] + mInvI2_R2xN2 * lambda[1]); } return true; } return false; } /// Override total lagrange multiplier, can be used to set the initial value for warm starting inline void SetTotalLambda(const Vec2 &inLambda) { mTotalLambda = inLambda; } /// Return lagrange multiplier inline const Vec2 & GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Vec3 mR1PlusUxN1; Vec3 mR1PlusUxN2; Vec3 mR2xN1; Vec3 mR2xN2; Vec3 mInvI1_R1PlusUxN1; Vec3 mInvI1_R1PlusUxN2; Vec3 mInvI2_R2xN1; Vec3 mInvI2_R2xN2; Mat22 mEffectiveMass; Vec2 mTotalLambda { Vec2::sZero() }; }; JPH_NAMESPACE_END