// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once JPH_NAMESPACE_BEGIN // Note that this file exists because std::sin etc. are not platform independent and will lead to non-deterministic simulation /// Sine of x (input in radians) JPH_INLINE float Sin(float inX) { Vec4 s, c; Vec4::sReplicate(inX).SinCos(s, c); return s.GetX(); } /// Cosine of x (input in radians) JPH_INLINE float Cos(float inX) { Vec4 s, c; Vec4::sReplicate(inX).SinCos(s, c); return c.GetX(); } /// Tangent of x (input in radians) JPH_INLINE float Tan(float inX) { return Vec4::sReplicate(inX).Tan().GetX(); } /// Arc sine of x (returns value in the range [-PI / 2, PI / 2]) /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::asin JPH_INLINE float ASin(float inX) { return Vec4::sReplicate(inX).ASin().GetX(); } /// Arc cosine of x (returns value in the range [0, PI]) /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::acos JPH_INLINE float ACos(float inX) { return Vec4::sReplicate(inX).ACos().GetX(); } /// An approximation of ACos, max error is 4.2e-3 over the entire range [-1, 1], is approximately 2.5x faster than ACos JPH_INLINE float ACosApproximate(float inX) { // See: https://www.johndcook.com/blog/2022/09/06/inverse-cosine-near-1/ // See also: https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/ // Taylor of cos(x) = 1 - x^2 / 2 + ... // Substitute x = sqrt(2 y) we get: cos(sqrt(2 y)) = 1 - y // Substitute z = 1 - y we get: cos(sqrt(2 (1 - z))) = z <=> acos(z) = sqrt(2 (1 - z)) // To avoid the discontinuity at 1, instead of using the Taylor expansion of acos(x) we use acos(x) / sqrt(2 (1 - x)) = 1 + (1 - x) / 12 + ... // Since the approximation was made at 1, it has quite a large error at 0 meaning that if we want to extend to the // range [-1, 1] by mirroring the range [0, 1], the value at 0+ is not the same as 0-. // So we observe that the form of the Taylor expansion is f(x) = sqrt(1 - x) * (a + b x) and we fit the function so that f(0) = pi / 2 // this gives us a = pi / 2. f(1) = 0 regardless of b. We search for a constant b that minimizes the error in the range [0, 1]. float abs_x = min(abs(inX), 1.0f); // Ensure that we don't get a value larger than 1 float val = sqrt(1.0f - abs_x) * (JPH_PI / 2 - 0.175394f * abs_x); // Our approximation is valid in the range [0, 1], extend it to the range [-1, 1] return inX < 0? JPH_PI - val : val; } /// Arc tangent of x (returns value in the range [-PI / 2, PI / 2]) JPH_INLINE float ATan(float inX) { return Vec4::sReplicate(inX).ATan().GetX(); } /// Arc tangent of y / x using the signs of the arguments to determine the correct quadrant (returns value in the range [-PI, PI]) JPH_INLINE float ATan2(float inY, float inX) { return Vec4::sATan2(Vec4::sReplicate(inY), Vec4::sReplicate(inX)).GetX(); } JPH_NAMESPACE_END