// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include JPH_NAMESPACE_BEGIN /// Holds a 4x4 matrix of floats, but supports also operations on the 3x3 upper left part of the matrix. class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Mat44 { public: JPH_OVERRIDE_NEW_DELETE // Underlying column type using Type = Vec4::Type; // Argument type using ArgType = Mat44Arg; /// Constructor Mat44() = default; ///< Intentionally not initialized for performance reasons JPH_INLINE Mat44(Vec4Arg inC1, Vec4Arg inC2, Vec4Arg inC3, Vec4Arg inC4); JPH_INLINE Mat44(Vec4Arg inC1, Vec4Arg inC2, Vec4Arg inC3, Vec3Arg inC4); Mat44(const Mat44 &inM2) = default; Mat44 & operator = (const Mat44 &inM2) = default; JPH_INLINE Mat44(Type inC1, Type inC2, Type inC3, Type inC4); /// Zero matrix static JPH_INLINE Mat44 sZero(); /// Identity matrix static JPH_INLINE Mat44 sIdentity(); /// Matrix filled with NaN's static JPH_INLINE Mat44 sNaN(); /// Load 16 floats from memory static JPH_INLINE Mat44 sLoadFloat4x4(const Float4 *inV); /// Load 16 floats from memory, 16 bytes aligned static JPH_INLINE Mat44 sLoadFloat4x4Aligned(const Float4 *inV); /// Rotate around X, Y or Z axis (angle in radians) static JPH_INLINE Mat44 sRotationX(float inX); static JPH_INLINE Mat44 sRotationY(float inY); static JPH_INLINE Mat44 sRotationZ(float inZ); /// Rotate around arbitrary axis static JPH_INLINE Mat44 sRotation(Vec3Arg inAxis, float inAngle); /// Rotate from quaternion static JPH_INLINE Mat44 sRotation(QuatArg inQuat); /// Get matrix that translates static JPH_INLINE Mat44 sTranslation(Vec3Arg inV); /// Get matrix that rotates and translates static JPH_INLINE Mat44 sRotationTranslation(QuatArg inR, Vec3Arg inT); /// Get inverse matrix of sRotationTranslation static JPH_INLINE Mat44 sInverseRotationTranslation(QuatArg inR, Vec3Arg inT); /// Get matrix that scales uniformly static JPH_INLINE Mat44 sScale(float inScale); /// Get matrix that scales (produces a matrix with (inV, 1) on its diagonal) static JPH_INLINE Mat44 sScale(Vec3Arg inV); /// Get outer product of inV and inV2 (equivalent to \f$inV1 \otimes inV2\f$) static JPH_INLINE Mat44 sOuterProduct(Vec3Arg inV1, Vec3Arg inV2); /// Get matrix that represents a cross product \f$A \times B = \text{sCrossProduct}(A) \: B\f$ static JPH_INLINE Mat44 sCrossProduct(Vec3Arg inV); /// Returns matrix ML so that \f$ML(q) \: p = q \: p\f$ (where p and q are quaternions) static JPH_INLINE Mat44 sQuatLeftMultiply(QuatArg inQ); /// Returns matrix MR so that \f$MR(q) \: p = p \: q\f$ (where p and q are quaternions) static JPH_INLINE Mat44 sQuatRightMultiply(QuatArg inQ); /// Returns a look at matrix that transforms from world space to view space /// @param inPos Position of the camera /// @param inTarget Target of the camera /// @param inUp Up vector static JPH_INLINE Mat44 sLookAt(Vec3Arg inPos, Vec3Arg inTarget, Vec3Arg inUp); /// Returns a right-handed perspective projection matrix static JPH_INLINE Mat44 sPerspective(float inFovY, float inAspect, float inNear, float inFar); /// Get float component by element index JPH_INLINE float operator () (uint inRow, uint inColumn) const { JPH_ASSERT(inRow < 4); JPH_ASSERT(inColumn < 4); return mCol[inColumn].mF32[inRow]; } JPH_INLINE float & operator () (uint inRow, uint inColumn) { JPH_ASSERT(inRow < 4); JPH_ASSERT(inColumn < 4); return mCol[inColumn].mF32[inRow]; } /// Comparison JPH_INLINE bool operator == (Mat44Arg inM2) const; JPH_INLINE bool operator != (Mat44Arg inM2) const { return !(*this == inM2); } /// Test if two matrices are close JPH_INLINE bool IsClose(Mat44Arg inM2, float inMaxDistSq = 1.0e-12f) const; /// Multiply matrix by matrix JPH_INLINE Mat44 operator * (Mat44Arg inM) const; /// Multiply vector by matrix JPH_INLINE Vec3 operator * (Vec3Arg inV) const; JPH_INLINE Vec4 operator * (Vec4Arg inV) const; /// Multiply vector by only 3x3 part of the matrix JPH_INLINE Vec3 Multiply3x3(Vec3Arg inV) const; /// Multiply vector by only 3x3 part of the transpose of the matrix (\f$result = this^T \: inV\f$) JPH_INLINE Vec3 Multiply3x3Transposed(Vec3Arg inV) const; /// Multiply 3x3 matrix by 3x3 matrix JPH_INLINE Mat44 Multiply3x3(Mat44Arg inM) const; /// Multiply transpose of 3x3 matrix by 3x3 matrix (\f$result = this^T \: inM\f$) JPH_INLINE Mat44 Multiply3x3LeftTransposed(Mat44Arg inM) const; /// Multiply 3x3 matrix by the transpose of a 3x3 matrix (\f$result = this \: inM^T\f$) JPH_INLINE Mat44 Multiply3x3RightTransposed(Mat44Arg inM) const; /// Multiply matrix with float JPH_INLINE Mat44 operator * (float inV) const; friend JPH_INLINE Mat44 operator * (float inV, Mat44Arg inM) { return inM * inV; } /// Multiply matrix with float JPH_INLINE Mat44 & operator *= (float inV); /// Per element addition of matrix JPH_INLINE Mat44 operator + (Mat44Arg inM) const; /// Negate JPH_INLINE Mat44 operator - () const; /// Per element subtraction of matrix JPH_INLINE Mat44 operator - (Mat44Arg inM) const; /// Per element addition of matrix JPH_INLINE Mat44 & operator += (Mat44Arg inM); /// Access to the columns JPH_INLINE Vec3 GetAxisX() const { return Vec3(mCol[0]); } JPH_INLINE void SetAxisX(Vec3Arg inV) { mCol[0] = Vec4(inV, 0.0f); } JPH_INLINE Vec3 GetAxisY() const { return Vec3(mCol[1]); } JPH_INLINE void SetAxisY(Vec3Arg inV) { mCol[1] = Vec4(inV, 0.0f); } JPH_INLINE Vec3 GetAxisZ() const { return Vec3(mCol[2]); } JPH_INLINE void SetAxisZ(Vec3Arg inV) { mCol[2] = Vec4(inV, 0.0f); } JPH_INLINE Vec3 GetTranslation() const { return Vec3(mCol[3]); } JPH_INLINE void SetTranslation(Vec3Arg inV) { mCol[3] = Vec4(inV, 1.0f); } JPH_INLINE Vec3 GetDiagonal3() const { return Vec3(mCol[0][0], mCol[1][1], mCol[2][2]); } JPH_INLINE void SetDiagonal3(Vec3Arg inV) { mCol[0][0] = inV.GetX(); mCol[1][1] = inV.GetY(); mCol[2][2] = inV.GetZ(); } JPH_INLINE Vec4 GetDiagonal4() const { return Vec4(mCol[0][0], mCol[1][1], mCol[2][2], mCol[3][3]); } JPH_INLINE void SetDiagonal4(Vec4Arg inV) { mCol[0][0] = inV.GetX(); mCol[1][1] = inV.GetY(); mCol[2][2] = inV.GetZ(); mCol[3][3] = inV.GetW(); } JPH_INLINE Vec3 GetColumn3(uint inCol) const { JPH_ASSERT(inCol < 4); return Vec3(mCol[inCol]); } JPH_INLINE void SetColumn3(uint inCol, Vec3Arg inV) { JPH_ASSERT(inCol < 4); mCol[inCol] = Vec4(inV, inCol == 3? 1.0f : 0.0f); } JPH_INLINE Vec4 GetColumn4(uint inCol) const { JPH_ASSERT(inCol < 4); return mCol[inCol]; } JPH_INLINE void SetColumn4(uint inCol, Vec4Arg inV) { JPH_ASSERT(inCol < 4); mCol[inCol] = inV; } /// Store matrix to memory JPH_INLINE void StoreFloat4x4(Float4 *outV) const; /// Transpose matrix JPH_INLINE Mat44 Transposed() const; /// Transpose 3x3 subpart of matrix JPH_INLINE Mat44 Transposed3x3() const; /// Inverse 4x4 matrix JPH_INLINE Mat44 Inversed() const; /// Inverse 4x4 matrix when it only contains rotation and translation JPH_INLINE Mat44 InversedRotationTranslation() const; /// Get the determinant of a 3x3 matrix JPH_INLINE float GetDeterminant3x3() const; /// Get the adjoint of a 3x3 matrix JPH_INLINE Mat44 Adjointed3x3() const; /// Inverse 3x3 matrix JPH_INLINE Mat44 Inversed3x3() const; /// *this = inM.Inversed3x3(), returns false if the matrix is singular in which case *this is unchanged JPH_INLINE bool SetInversed3x3(Mat44Arg inM); /// Get rotation part only (note: retains the first 3 values from the bottom row) JPH_INLINE Mat44 GetRotation() const; /// Get rotation part only (note: also clears the bottom row) JPH_INLINE Mat44 GetRotationSafe() const; /// Updates the rotation part of this matrix (the first 3 columns) JPH_INLINE void SetRotation(Mat44Arg inRotation); /// Convert to quaternion JPH_INLINE Quat GetQuaternion() const; /// Get matrix that transforms a direction with the same transform as this matrix (length is not preserved) JPH_INLINE Mat44 GetDirectionPreservingMatrix() const { return GetRotation().Inversed3x3().Transposed3x3(); } /// Pre multiply by translation matrix: result = this * Mat44::sTranslation(inTranslation) JPH_INLINE Mat44 PreTranslated(Vec3Arg inTranslation) const; /// Post multiply by translation matrix: result = Mat44::sTranslation(inTranslation) * this (i.e. add inTranslation to the 4-th column) JPH_INLINE Mat44 PostTranslated(Vec3Arg inTranslation) const; /// Scale a matrix: result = this * Mat44::sScale(inScale) JPH_INLINE Mat44 PreScaled(Vec3Arg inScale) const; /// Scale a matrix: result = Mat44::sScale(inScale) * this JPH_INLINE Mat44 PostScaled(Vec3Arg inScale) const; /// Decompose a matrix into a rotation & translation part and into a scale part so that: /// this = return_value * Mat44::sScale(outScale). /// This equation only holds when the matrix is orthogonal, if it is not the returned matrix /// will be made orthogonal using the modified Gram-Schmidt algorithm (see: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process) JPH_INLINE Mat44 Decompose(Vec3 &outScale) const; #ifndef JPH_DOUBLE_PRECISION /// In single precision mode just return the matrix itself JPH_INLINE Mat44 ToMat44() const { return *this; } #endif // !JPH_DOUBLE_PRECISION /// To String friend ostream & operator << (ostream &inStream, Mat44Arg inM) { inStream << inM.mCol[0] << ", " << inM.mCol[1] << ", " << inM.mCol[2] << ", " << inM.mCol[3]; return inStream; } private: Vec4 mCol[4]; ///< Column }; static_assert(std::is_trivial(), "Is supposed to be a trivial type!"); JPH_NAMESPACE_END #include "Mat44.inl"