// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include JPH_NAMESPACE_BEGIN /// Helper functions that process 4 axis aligned boxes at the same time using SIMD /// Test if 4 bounding boxes overlap with 1 bounding box, splat 1 box JPH_INLINE UVec4 AABox4VsBox(const AABox &inBox1, Vec4Arg inBox2MinX, Vec4Arg inBox2MinY, Vec4Arg inBox2MinZ, Vec4Arg inBox2MaxX, Vec4Arg inBox2MaxY, Vec4Arg inBox2MaxZ) { // Splat values of box 1 Vec4 box1_minx = inBox1.mMin.SplatX(); Vec4 box1_miny = inBox1.mMin.SplatY(); Vec4 box1_minz = inBox1.mMin.SplatZ(); Vec4 box1_maxx = inBox1.mMax.SplatX(); Vec4 box1_maxy = inBox1.mMax.SplatY(); Vec4 box1_maxz = inBox1.mMax.SplatZ(); // Test separation over each axis UVec4 nooverlapx = UVec4::sOr(Vec4::sGreater(box1_minx, inBox2MaxX), Vec4::sGreater(inBox2MinX, box1_maxx)); UVec4 nooverlapy = UVec4::sOr(Vec4::sGreater(box1_miny, inBox2MaxY), Vec4::sGreater(inBox2MinY, box1_maxy)); UVec4 nooverlapz = UVec4::sOr(Vec4::sGreater(box1_minz, inBox2MaxZ), Vec4::sGreater(inBox2MinZ, box1_maxz)); // Return overlap return UVec4::sNot(UVec4::sOr(UVec4::sOr(nooverlapx, nooverlapy), nooverlapz)); } /// Scale 4 axis aligned boxes JPH_INLINE void AABox4Scale(Vec3Arg inScale, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, Vec4 &outBoundsMinX, Vec4 &outBoundsMinY, Vec4 &outBoundsMinZ, Vec4 &outBoundsMaxX, Vec4 &outBoundsMaxY, Vec4 &outBoundsMaxZ) { Vec4 scale_x = inScale.SplatX(); Vec4 scaled_min_x = scale_x * inBoxMinX; Vec4 scaled_max_x = scale_x * inBoxMaxX; outBoundsMinX = Vec4::sMin(scaled_min_x, scaled_max_x); // Negative scale can flip min and max outBoundsMaxX = Vec4::sMax(scaled_min_x, scaled_max_x); Vec4 scale_y = inScale.SplatY(); Vec4 scaled_min_y = scale_y * inBoxMinY; Vec4 scaled_max_y = scale_y * inBoxMaxY; outBoundsMinY = Vec4::sMin(scaled_min_y, scaled_max_y); outBoundsMaxY = Vec4::sMax(scaled_min_y, scaled_max_y); Vec4 scale_z = inScale.SplatZ(); Vec4 scaled_min_z = scale_z * inBoxMinZ; Vec4 scaled_max_z = scale_z * inBoxMaxZ; outBoundsMinZ = Vec4::sMin(scaled_min_z, scaled_max_z); outBoundsMaxZ = Vec4::sMax(scaled_min_z, scaled_max_z); } /// Enlarge 4 bounding boxes with extent (add to both sides) JPH_INLINE void AABox4EnlargeWithExtent(Vec3Arg inExtent, Vec4 &ioBoundsMinX, Vec4 &ioBoundsMinY, Vec4 &ioBoundsMinZ, Vec4 &ioBoundsMaxX, Vec4 &ioBoundsMaxY, Vec4 &ioBoundsMaxZ) { Vec4 extent_x = inExtent.SplatX(); ioBoundsMinX -= extent_x; ioBoundsMaxX += extent_x; Vec4 extent_y = inExtent.SplatY(); ioBoundsMinY -= extent_y; ioBoundsMaxY += extent_y; Vec4 extent_z = inExtent.SplatZ(); ioBoundsMinZ -= extent_z; ioBoundsMaxZ += extent_z; } /// Test if 4 bounding boxes overlap with a point JPH_INLINE UVec4 AABox4VsPoint(Vec3Arg inPoint, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ) { // Splat point to 4 component vectors Vec4 point_x = Vec4(inPoint).SplatX(); Vec4 point_y = Vec4(inPoint).SplatY(); Vec4 point_z = Vec4(inPoint).SplatZ(); // Test if point overlaps with box UVec4 overlapx = UVec4::sAnd(Vec4::sGreaterOrEqual(point_x, inBoxMinX), Vec4::sLessOrEqual(point_x, inBoxMaxX)); UVec4 overlapy = UVec4::sAnd(Vec4::sGreaterOrEqual(point_y, inBoxMinY), Vec4::sLessOrEqual(point_y, inBoxMaxY)); UVec4 overlapz = UVec4::sAnd(Vec4::sGreaterOrEqual(point_z, inBoxMinZ), Vec4::sLessOrEqual(point_z, inBoxMaxZ)); // Test if all are overlapping return UVec4::sAnd(UVec4::sAnd(overlapx, overlapy), overlapz); } /// Test if 4 bounding boxes overlap with an oriented box JPH_INLINE UVec4 AABox4VsBox(Mat44Arg inOrientation, Vec3Arg inHalfExtents, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, float inEpsilon = 1.0e-6f) { // Taken from: Real Time Collision Detection - Christer Ericson // Chapter 4.4.1, page 103-105. // Note that the code is swapped around: A is the aabox and B is the oriented box (this saves us from having to invert the orientation of the oriented box) // Compute translation vector t (the translation of B in the space of A) Vec4 t[3] { inOrientation.GetTranslation().SplatX() - 0.5f * (inBoxMinX + inBoxMaxX), inOrientation.GetTranslation().SplatY() - 0.5f * (inBoxMinY + inBoxMaxY), inOrientation.GetTranslation().SplatZ() - 0.5f * (inBoxMinZ + inBoxMaxZ) }; // Compute common subexpressions. Add in an epsilon term to // counteract arithmetic errors when two edges are parallel and // their cross product is (near) null (see text for details) Vec3 epsilon = Vec3::sReplicate(inEpsilon); Vec3 abs_r[3] { inOrientation.GetAxisX().Abs() + epsilon, inOrientation.GetAxisY().Abs() + epsilon, inOrientation.GetAxisZ().Abs() + epsilon }; // Half extents for a Vec4 a_half_extents[3] { 0.5f * (inBoxMaxX - inBoxMinX), 0.5f * (inBoxMaxY - inBoxMinY), 0.5f * (inBoxMaxZ - inBoxMinZ) }; // Half extents of b Vec4 b_half_extents_x = inHalfExtents.SplatX(); Vec4 b_half_extents_y = inHalfExtents.SplatY(); Vec4 b_half_extents_z = inHalfExtents.SplatZ(); // Each component corresponds to 1 overlapping OBB vs ABB UVec4 overlaps = UVec4(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff); // Test axes L = A0, L = A1, L = A2 Vec4 ra, rb; for (int i = 0; i < 3; i++) { ra = a_half_extents[i]; rb = b_half_extents_x * abs_r[0][i] + b_half_extents_y * abs_r[1][i] + b_half_extents_z * abs_r[2][i]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual(t[i].Abs(), ra + rb)); } // Test axes L = B0, L = B1, L = B2 for (int i = 0; i < 3; i++) { ra = a_half_extents[0] * abs_r[i][0] + a_half_extents[1] * abs_r[i][1] + a_half_extents[2] * abs_r[i][2]; rb = Vec4::sReplicate(inHalfExtents[i]); overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(0, i) + t[1] * inOrientation(1, i) + t[2] * inOrientation(2, i)).Abs(), ra + rb)); } // Test axis L = A0 x B0 ra = a_half_extents[1] * abs_r[0][2] + a_half_extents[2] * abs_r[0][1]; rb = b_half_extents_y * abs_r[2][0] + b_half_extents_z * abs_r[1][0]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 0) - t[1] * inOrientation(2, 0)).Abs(), ra + rb)); // Test axis L = A0 x B1 ra = a_half_extents[1] * abs_r[1][2] + a_half_extents[2] * abs_r[1][1]; rb = b_half_extents_x * abs_r[2][0] + b_half_extents_z * abs_r[0][0]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 1) - t[1] * inOrientation(2, 1)).Abs(), ra + rb)); // Test axis L = A0 x B2 ra = a_half_extents[1] * abs_r[2][2] + a_half_extents[2] * abs_r[2][1]; rb = b_half_extents_x * abs_r[1][0] + b_half_extents_y * abs_r[0][0]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 2) - t[1] * inOrientation(2, 2)).Abs(), ra + rb)); // Test axis L = A1 x B0 ra = a_half_extents[0] * abs_r[0][2] + a_half_extents[2] * abs_r[0][0]; rb = b_half_extents_y * abs_r[2][1] + b_half_extents_z * abs_r[1][1]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 0) - t[2] * inOrientation(0, 0)).Abs(), ra + rb)); // Test axis L = A1 x B1 ra = a_half_extents[0] * abs_r[1][2] + a_half_extents[2] * abs_r[1][0]; rb = b_half_extents_x * abs_r[2][1] + b_half_extents_z * abs_r[0][1]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 1) - t[2] * inOrientation(0, 1)).Abs(), ra + rb)); // Test axis L = A1 x B2 ra = a_half_extents[0] * abs_r[2][2] + a_half_extents[2] * abs_r[2][0]; rb = b_half_extents_x * abs_r[1][1] + b_half_extents_y * abs_r[0][1]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 2) - t[2] * inOrientation(0, 2)).Abs(), ra + rb)); // Test axis L = A2 x B0 ra = a_half_extents[0] * abs_r[0][1] + a_half_extents[1] * abs_r[0][0]; rb = b_half_extents_y * abs_r[2][2] + b_half_extents_z * abs_r[1][2]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 0) - t[0] * inOrientation(1, 0)).Abs(), ra + rb)); // Test axis L = A2 x B1 ra = a_half_extents[0] * abs_r[1][1] + a_half_extents[1] * abs_r[1][0]; rb = b_half_extents_x * abs_r[2][2] + b_half_extents_z * abs_r[0][2]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 1) - t[0] * inOrientation(1, 1)).Abs(), ra + rb)); // Test axis L = A2 x B2 ra = a_half_extents[0] * abs_r[2][1] + a_half_extents[1] * abs_r[2][0]; rb = b_half_extents_x * abs_r[1][2] + b_half_extents_y * abs_r[0][2]; overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 2) - t[0] * inOrientation(1, 2)).Abs(), ra + rb)); // Return if the OBB vs AABBs are intersecting return overlaps; } /// Convenience function that tests 4 AABoxes vs OrientedBox JPH_INLINE UVec4 AABox4VsBox(const OrientedBox &inBox, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, float inEpsilon = 1.0e-6f) { return AABox4VsBox(inBox.mOrientation, inBox.mHalfExtents, inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ, inEpsilon); } /// Get the squared distance between 4 AABoxes and a point JPH_INLINE Vec4 AABox4DistanceSqToPoint(Vec4Arg inPointX, Vec4Arg inPointY, Vec4Arg inPointZ, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ) { // Get closest point on box Vec4 closest_x = Vec4::sMin(Vec4::sMax(inPointX, inBoxMinX), inBoxMaxX); Vec4 closest_y = Vec4::sMin(Vec4::sMax(inPointY, inBoxMinY), inBoxMaxY); Vec4 closest_z = Vec4::sMin(Vec4::sMax(inPointZ, inBoxMinZ), inBoxMaxZ); // Return the squared distance between the box and point return Square(closest_x - inPointX) + Square(closest_y - inPointY) + Square(closest_z - inPointZ); } /// Get the squared distance between 4 AABoxes and a point JPH_INLINE Vec4 AABox4DistanceSqToPoint(Vec3 inPoint, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ) { return AABox4DistanceSqToPoint(inPoint.SplatX(), inPoint.SplatY(), inPoint.SplatZ(), inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ); } /// Test 4 AABoxes vs a sphere JPH_INLINE UVec4 AABox4VsSphere(Vec4Arg inCenterX, Vec4Arg inCenterY, Vec4Arg inCenterZ, Vec4Arg inRadiusSq, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ) { // Test the distance from the center of the sphere to the box is smaller than the radius Vec4 distance_sq = AABox4DistanceSqToPoint(inCenterX, inCenterY, inCenterZ, inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ); return Vec4::sLessOrEqual(distance_sq, inRadiusSq); } /// Test 4 AABoxes vs a sphere JPH_INLINE UVec4 AABox4VsSphere(Vec3Arg inCenter, float inRadiusSq, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ) { return AABox4VsSphere(inCenter.SplatX(), inCenter.SplatY(), inCenter.SplatZ(), Vec4::sReplicate(inRadiusSq), inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ); } JPH_NAMESPACE_END