feat: godot-engine-source-4.3-stable
This commit is contained in:
parent
c59a7dcade
commit
7125d019b5
11149 changed files with 5070401 additions and 0 deletions
23
engine/thirdparty/clipper2/LICENSE
vendored
Normal file
23
engine/thirdparty/clipper2/LICENSE
vendored
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
Boost Software License - Version 1.0 - August 17th, 2003
|
||||
|
||||
Permission is hereby granted, free of charge, to any person or organization
|
||||
obtaining a copy of the software and accompanying documentation covered by
|
||||
this license (the "Software") to use, reproduce, display, distribute,
|
||||
execute, and transmit the Software, and to prepare derivative works of the
|
||||
Software, and to permit third-parties to whom the Software is furnished to
|
||||
do so, all subject to the following:
|
||||
|
||||
The copyright notices in the Software and this entire statement, including
|
||||
the above license grant, this restriction and the following disclaimer,
|
||||
must be included in all copies of the Software, in whole or in part, and
|
||||
all derivative works of the Software, unless such copies or derivative
|
||||
works are solely in the form of machine-executable object code generated by
|
||||
a source language processor.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
||||
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
||||
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
||||
844
engine/thirdparty/clipper2/include/clipper2/clipper.core.h
vendored
Normal file
844
engine/thirdparty/clipper2/include/clipper2/clipper.core.h
vendored
Normal file
|
|
@ -0,0 +1,844 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 24 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : Core Clipper Library structures and functions *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_CORE_H
|
||||
#define CLIPPER_CORE_H
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <numeric>
|
||||
#include "clipper2/clipper.version.h"
|
||||
|
||||
#define CLIPPER2_THROW(exception) std::abort()
|
||||
|
||||
namespace Clipper2Lib
|
||||
{
|
||||
|
||||
#if (defined(__cpp_exceptions) && __cpp_exceptions) || (defined(__EXCEPTIONS) && __EXCEPTIONS)
|
||||
|
||||
class Clipper2Exception : public std::exception {
|
||||
public:
|
||||
explicit Clipper2Exception(const char* description) :
|
||||
m_descr(description) {}
|
||||
virtual const char* what() const throw() override { return m_descr.c_str(); }
|
||||
private:
|
||||
std::string m_descr;
|
||||
};
|
||||
|
||||
static const char* precision_error =
|
||||
"Precision exceeds the permitted range";
|
||||
static const char* range_error =
|
||||
"Values exceed permitted range";
|
||||
static const char* scale_error =
|
||||
"Invalid scale (either 0 or too large)";
|
||||
static const char* non_pair_error =
|
||||
"There must be 2 values for each coordinate";
|
||||
static const char* undefined_error =
|
||||
"There is an undefined error in Clipper2";
|
||||
#endif
|
||||
|
||||
// error codes (2^n)
|
||||
const int precision_error_i = 1; // non-fatal
|
||||
const int scale_error_i = 2; // non-fatal
|
||||
const int non_pair_error_i = 4; // non-fatal
|
||||
const int undefined_error_i = 32; // fatal
|
||||
const int range_error_i = 64;
|
||||
|
||||
#ifndef PI
|
||||
static const double PI = 3.141592653589793238;
|
||||
#endif
|
||||
|
||||
#ifdef CLIPPER2_MAX_PRECISION
|
||||
const int MAX_DECIMAL_PRECISION = CLIPPER2_MAX_PRECISION;
|
||||
#else
|
||||
const int MAX_DECIMAL_PRECISION = 8; // see Discussions #564
|
||||
#endif
|
||||
|
||||
static const int64_t MAX_COORD = INT64_MAX >> 2;
|
||||
static const int64_t MIN_COORD = -MAX_COORD;
|
||||
static const int64_t INVALID = INT64_MAX;
|
||||
const double max_coord = static_cast<double>(MAX_COORD);
|
||||
const double min_coord = static_cast<double>(MIN_COORD);
|
||||
|
||||
static const double MAX_DBL = (std::numeric_limits<double>::max)();
|
||||
|
||||
static void DoError(int error_code)
|
||||
{
|
||||
#if (defined(__cpp_exceptions) && __cpp_exceptions) || (defined(__EXCEPTIONS) && __EXCEPTIONS)
|
||||
switch (error_code)
|
||||
{
|
||||
case precision_error_i:
|
||||
CLIPPER2_THROW(Clipper2Exception(precision_error));
|
||||
case scale_error_i:
|
||||
CLIPPER2_THROW(Clipper2Exception(scale_error));
|
||||
case non_pair_error_i:
|
||||
CLIPPER2_THROW(Clipper2Exception(non_pair_error));
|
||||
case undefined_error_i:
|
||||
CLIPPER2_THROW(Clipper2Exception(undefined_error));
|
||||
case range_error_i:
|
||||
CLIPPER2_THROW(Clipper2Exception(range_error));
|
||||
}
|
||||
#else
|
||||
if(error_code) {}; // only to stop compiler 'parameter not used' warning
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//By far the most widely used filling rules for polygons are EvenOdd
|
||||
//and NonZero, sometimes called Alternate and Winding respectively.
|
||||
//https://en.wikipedia.org/wiki/Nonzero-rule
|
||||
enum class FillRule { EvenOdd, NonZero, Positive, Negative };
|
||||
|
||||
// Point ------------------------------------------------------------------------
|
||||
|
||||
template <typename T>
|
||||
struct Point {
|
||||
T x;
|
||||
T y;
|
||||
#ifdef USINGZ
|
||||
int64_t z;
|
||||
|
||||
template <typename T2>
|
||||
inline void Init(const T2 x_ = 0, const T2 y_ = 0, const int64_t z_ = 0)
|
||||
{
|
||||
if constexpr (std::numeric_limits<T>::is_integer &&
|
||||
!std::numeric_limits<T2>::is_integer)
|
||||
{
|
||||
x = static_cast<T>(std::round(x_));
|
||||
y = static_cast<T>(std::round(y_));
|
||||
z = z_;
|
||||
}
|
||||
else
|
||||
{
|
||||
x = static_cast<T>(x_);
|
||||
y = static_cast<T>(y_);
|
||||
z = z_;
|
||||
}
|
||||
}
|
||||
|
||||
explicit Point() : x(0), y(0), z(0) {};
|
||||
|
||||
template <typename T2>
|
||||
Point(const T2 x_, const T2 y_, const int64_t z_ = 0)
|
||||
{
|
||||
Init(x_, y_);
|
||||
z = z_;
|
||||
}
|
||||
|
||||
template <typename T2>
|
||||
explicit Point(const Point<T2>& p)
|
||||
{
|
||||
Init(p.x, p.y, p.z);
|
||||
}
|
||||
|
||||
Point operator * (const double scale) const
|
||||
{
|
||||
return Point(x * scale, y * scale, z);
|
||||
}
|
||||
|
||||
void SetZ(const int64_t z_value) { z = z_value; }
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Point& point)
|
||||
{
|
||||
os << point.x << "," << point.y << "," << point.z;
|
||||
return os;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template <typename T2>
|
||||
inline void Init(const T2 x_ = 0, const T2 y_ = 0)
|
||||
{
|
||||
if constexpr (std::numeric_limits<T>::is_integer &&
|
||||
!std::numeric_limits<T2>::is_integer)
|
||||
{
|
||||
x = static_cast<T>(std::round(x_));
|
||||
y = static_cast<T>(std::round(y_));
|
||||
}
|
||||
else
|
||||
{
|
||||
x = static_cast<T>(x_);
|
||||
y = static_cast<T>(y_);
|
||||
}
|
||||
}
|
||||
|
||||
explicit Point() : x(0), y(0) {};
|
||||
|
||||
template <typename T2>
|
||||
Point(const T2 x_, const T2 y_) { Init(x_, y_); }
|
||||
|
||||
template <typename T2>
|
||||
explicit Point(const Point<T2>& p) { Init(p.x, p.y); }
|
||||
|
||||
Point operator * (const double scale) const
|
||||
{
|
||||
return Point(x * scale, y * scale);
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Point& point)
|
||||
{
|
||||
os << point.x << "," << point.y;
|
||||
return os;
|
||||
}
|
||||
#endif
|
||||
|
||||
friend bool operator==(const Point& a, const Point& b)
|
||||
{
|
||||
return a.x == b.x && a.y == b.y;
|
||||
}
|
||||
|
||||
friend bool operator!=(const Point& a, const Point& b)
|
||||
{
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
inline Point<T> operator-() const
|
||||
{
|
||||
return Point<T>(-x, -y);
|
||||
}
|
||||
|
||||
inline Point operator+(const Point& b) const
|
||||
{
|
||||
return Point(x + b.x, y + b.y);
|
||||
}
|
||||
|
||||
inline Point operator-(const Point& b) const
|
||||
{
|
||||
return Point(x - b.x, y - b.y);
|
||||
}
|
||||
|
||||
inline void Negate() { x = -x; y = -y; }
|
||||
|
||||
};
|
||||
|
||||
//nb: using 'using' here (instead of typedef) as they can be used in templates
|
||||
using Point64 = Point<int64_t>;
|
||||
using PointD = Point<double>;
|
||||
|
||||
template <typename T>
|
||||
using Path = std::vector<Point<T>>;
|
||||
template <typename T>
|
||||
using Paths = std::vector<Path<T>>;
|
||||
|
||||
using Path64 = Path<int64_t>;
|
||||
using PathD = Path<double>;
|
||||
using Paths64 = std::vector< Path64>;
|
||||
using PathsD = std::vector< PathD>;
|
||||
|
||||
static const Point64 InvalidPoint64 = Point64(
|
||||
(std::numeric_limits<int64_t>::max)(),
|
||||
(std::numeric_limits<int64_t>::max)());
|
||||
static const PointD InvalidPointD = PointD(
|
||||
(std::numeric_limits<double>::max)(),
|
||||
(std::numeric_limits<double>::max)());
|
||||
|
||||
|
||||
// Rect ------------------------------------------------------------------------
|
||||
|
||||
template <typename T>
|
||||
struct Rect;
|
||||
|
||||
using Rect64 = Rect<int64_t>;
|
||||
using RectD = Rect<double>;
|
||||
|
||||
template <typename T>
|
||||
struct Rect {
|
||||
T left;
|
||||
T top;
|
||||
T right;
|
||||
T bottom;
|
||||
|
||||
Rect(T l, T t, T r, T b) :
|
||||
left(l),
|
||||
top(t),
|
||||
right(r),
|
||||
bottom(b) {}
|
||||
|
||||
Rect(bool is_valid = true)
|
||||
{
|
||||
if (is_valid)
|
||||
{
|
||||
left = right = top = bottom = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
left = top = (std::numeric_limits<T>::max)();
|
||||
right = bottom = (std::numeric_limits<T>::lowest)();
|
||||
}
|
||||
}
|
||||
|
||||
bool IsValid() const { return left != (std::numeric_limits<T>::max)(); }
|
||||
|
||||
T Width() const { return right - left; }
|
||||
T Height() const { return bottom - top; }
|
||||
void Width(T width) { right = left + width; }
|
||||
void Height(T height) { bottom = top + height; }
|
||||
|
||||
Point<T> MidPoint() const
|
||||
{
|
||||
return Point<T>((left + right) / 2, (top + bottom) / 2);
|
||||
}
|
||||
|
||||
Path<T> AsPath() const
|
||||
{
|
||||
Path<T> result;
|
||||
result.reserve(4);
|
||||
result.push_back(Point<T>(left, top));
|
||||
result.push_back(Point<T>(right, top));
|
||||
result.push_back(Point<T>(right, bottom));
|
||||
result.push_back(Point<T>(left, bottom));
|
||||
return result;
|
||||
}
|
||||
|
||||
bool Contains(const Point<T>& pt) const
|
||||
{
|
||||
return pt.x > left && pt.x < right&& pt.y > top && pt.y < bottom;
|
||||
}
|
||||
|
||||
bool Contains(const Rect<T>& rec) const
|
||||
{
|
||||
return rec.left >= left && rec.right <= right &&
|
||||
rec.top >= top && rec.bottom <= bottom;
|
||||
}
|
||||
|
||||
void Scale(double scale) {
|
||||
left *= scale;
|
||||
top *= scale;
|
||||
right *= scale;
|
||||
bottom *= scale;
|
||||
}
|
||||
|
||||
bool IsEmpty() const { return bottom <= top || right <= left; };
|
||||
|
||||
bool Intersects(const Rect<T>& rec) const
|
||||
{
|
||||
return ((std::max)(left, rec.left) <= (std::min)(right, rec.right)) &&
|
||||
((std::max)(top, rec.top) <= (std::min)(bottom, rec.bottom));
|
||||
};
|
||||
|
||||
bool operator==(const Rect<T>& other) const {
|
||||
return left == other.left && right == other.right &&
|
||||
top == other.top && bottom == other.bottom;
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Rect<T>& rect) {
|
||||
os << "(" << rect.left << "," << rect.top << "," << rect.right << "," << rect.bottom << ") ";
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Rect<T1> ScaleRect(const Rect<T2>& rect, double scale)
|
||||
{
|
||||
Rect<T1> result;
|
||||
|
||||
if constexpr (std::numeric_limits<T1>::is_integer &&
|
||||
!std::numeric_limits<T2>::is_integer)
|
||||
{
|
||||
result.left = static_cast<T1>(std::round(rect.left * scale));
|
||||
result.top = static_cast<T1>(std::round(rect.top * scale));
|
||||
result.right = static_cast<T1>(std::round(rect.right * scale));
|
||||
result.bottom = static_cast<T1>(std::round(rect.bottom * scale));
|
||||
}
|
||||
else
|
||||
{
|
||||
result.left = rect.left * scale;
|
||||
result.top = rect.top * scale;
|
||||
result.right = rect.right * scale;
|
||||
result.bottom = rect.bottom * scale;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static const Rect64 InvalidRect64 = Rect64(
|
||||
(std::numeric_limits<int64_t>::max)(),
|
||||
(std::numeric_limits<int64_t>::max)(),
|
||||
(std::numeric_limits<int64_t>::lowest)(),
|
||||
(std::numeric_limits<int64_t>::lowest)());
|
||||
static const RectD InvalidRectD = RectD(
|
||||
(std::numeric_limits<double>::max)(),
|
||||
(std::numeric_limits<double>::max)(),
|
||||
(std::numeric_limits<double>::lowest)(),
|
||||
(std::numeric_limits<double>::lowest)());
|
||||
|
||||
template <typename T>
|
||||
Rect<T> GetBounds(const Path<T>& path)
|
||||
{
|
||||
auto xmin = (std::numeric_limits<T>::max)();
|
||||
auto ymin = (std::numeric_limits<T>::max)();
|
||||
auto xmax = std::numeric_limits<T>::lowest();
|
||||
auto ymax = std::numeric_limits<T>::lowest();
|
||||
for (const auto& p : path)
|
||||
{
|
||||
if (p.x < xmin) xmin = p.x;
|
||||
if (p.x > xmax) xmax = p.x;
|
||||
if (p.y < ymin) ymin = p.y;
|
||||
if (p.y > ymax) ymax = p.y;
|
||||
}
|
||||
return Rect<T>(xmin, ymin, xmax, ymax);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Rect<T> GetBounds(const Paths<T>& paths)
|
||||
{
|
||||
auto xmin = (std::numeric_limits<T>::max)();
|
||||
auto ymin = (std::numeric_limits<T>::max)();
|
||||
auto xmax = std::numeric_limits<T>::lowest();
|
||||
auto ymax = std::numeric_limits<T>::lowest();
|
||||
for (const Path<T>& path : paths)
|
||||
for (const Point<T>& p : path)
|
||||
{
|
||||
if (p.x < xmin) xmin = p.x;
|
||||
if (p.x > xmax) xmax = p.x;
|
||||
if (p.y < ymin) ymin = p.y;
|
||||
if (p.y > ymax) ymax = p.y;
|
||||
}
|
||||
return Rect<T>(xmin, ymin, xmax, ymax);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator << (std::ostream& outstream, const Path<T>& path)
|
||||
{
|
||||
if (!path.empty())
|
||||
{
|
||||
auto pt = path.cbegin(), last = path.cend() - 1;
|
||||
while (pt != last)
|
||||
outstream << *pt++ << ", ";
|
||||
outstream << *last << std::endl;
|
||||
}
|
||||
return outstream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator << (std::ostream& outstream, const Paths<T>& paths)
|
||||
{
|
||||
for (auto p : paths)
|
||||
outstream << p;
|
||||
return outstream;
|
||||
}
|
||||
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Path<T1> ScalePath(const Path<T2>& path,
|
||||
double scale_x, double scale_y, int& error_code)
|
||||
{
|
||||
Path<T1> result;
|
||||
if (scale_x == 0 || scale_y == 0)
|
||||
{
|
||||
error_code |= scale_error_i;
|
||||
DoError(scale_error_i);
|
||||
// if no exception, treat as non-fatal error
|
||||
if (scale_x == 0) scale_x = 1.0;
|
||||
if (scale_y == 0) scale_y = 1.0;
|
||||
}
|
||||
|
||||
result.reserve(path.size());
|
||||
#ifdef USINGZ
|
||||
std::transform(path.begin(), path.end(), back_inserter(result),
|
||||
[scale_x, scale_y](const auto& pt)
|
||||
{ return Point<T1>(pt.x * scale_x, pt.y * scale_y, pt.z); });
|
||||
#else
|
||||
std::transform(path.begin(), path.end(), back_inserter(result),
|
||||
[scale_x, scale_y](const auto& pt)
|
||||
{ return Point<T1>(pt.x * scale_x, pt.y * scale_y); });
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Path<T1> ScalePath(const Path<T2>& path,
|
||||
double scale, int& error_code)
|
||||
{
|
||||
return ScalePath<T1, T2>(path, scale, scale, error_code);
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Paths<T1> ScalePaths(const Paths<T2>& paths,
|
||||
double scale_x, double scale_y, int& error_code)
|
||||
{
|
||||
Paths<T1> result;
|
||||
|
||||
if constexpr (std::numeric_limits<T1>::is_integer &&
|
||||
!std::numeric_limits<T2>::is_integer)
|
||||
{
|
||||
RectD r = GetBounds(paths);
|
||||
if ((r.left * scale_x) < min_coord ||
|
||||
(r.right * scale_x) > max_coord ||
|
||||
(r.top * scale_y) < min_coord ||
|
||||
(r.bottom * scale_y) > max_coord)
|
||||
{
|
||||
error_code |= range_error_i;
|
||||
DoError(range_error_i);
|
||||
return result; // empty path
|
||||
}
|
||||
}
|
||||
|
||||
result.reserve(paths.size());
|
||||
std::transform(paths.begin(), paths.end(), back_inserter(result),
|
||||
[=, &error_code](const auto& path)
|
||||
{ return ScalePath<T1, T2>(path, scale_x, scale_y, error_code); });
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Paths<T1> ScalePaths(const Paths<T2>& paths,
|
||||
double scale, int& error_code)
|
||||
{
|
||||
return ScalePaths<T1, T2>(paths, scale, scale, error_code);
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Path<T1> TransformPath(const Path<T2>& path)
|
||||
{
|
||||
Path<T1> result;
|
||||
result.reserve(path.size());
|
||||
std::transform(path.cbegin(), path.cend(), std::back_inserter(result),
|
||||
[](const Point<T2>& pt) {return Point<T1>(pt); });
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T1, typename T2>
|
||||
inline Paths<T1> TransformPaths(const Paths<T2>& paths)
|
||||
{
|
||||
Paths<T1> result;
|
||||
std::transform(paths.cbegin(), paths.cend(), std::back_inserter(result),
|
||||
[](const Path<T2>& path) {return TransformPath<T1, T2>(path); });
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline double Sqr(T val)
|
||||
{
|
||||
return static_cast<double>(val) * static_cast<double>(val);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline bool NearEqual(const Point<T>& p1,
|
||||
const Point<T>& p2, double max_dist_sqrd)
|
||||
{
|
||||
return Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y) < max_dist_sqrd;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline Path<T> StripNearEqual(const Path<T>& path,
|
||||
double max_dist_sqrd, bool is_closed_path)
|
||||
{
|
||||
if (path.size() == 0) return Path<T>();
|
||||
Path<T> result;
|
||||
result.reserve(path.size());
|
||||
typename Path<T>::const_iterator path_iter = path.cbegin();
|
||||
Point<T> first_pt = *path_iter++, last_pt = first_pt;
|
||||
result.push_back(first_pt);
|
||||
for (; path_iter != path.cend(); ++path_iter)
|
||||
{
|
||||
if (!NearEqual(*path_iter, last_pt, max_dist_sqrd))
|
||||
{
|
||||
last_pt = *path_iter;
|
||||
result.push_back(last_pt);
|
||||
}
|
||||
}
|
||||
if (!is_closed_path) return result;
|
||||
while (result.size() > 1 &&
|
||||
NearEqual(result.back(), first_pt, max_dist_sqrd)) result.pop_back();
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline Paths<T> StripNearEqual(const Paths<T>& paths,
|
||||
double max_dist_sqrd, bool is_closed_path)
|
||||
{
|
||||
Paths<T> result;
|
||||
result.reserve(paths.size());
|
||||
for (typename Paths<T>::const_iterator paths_citer = paths.cbegin();
|
||||
paths_citer != paths.cend(); ++paths_citer)
|
||||
{
|
||||
result.push_back(StripNearEqual(*paths_citer, max_dist_sqrd, is_closed_path));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void StripDuplicates( Path<T>& path, bool is_closed_path)
|
||||
{
|
||||
//https://stackoverflow.com/questions/1041620/whats-the-most-efficient-way-to-erase-duplicates-and-sort-a-vector#:~:text=Let%27s%20compare%20three%20approaches%3A
|
||||
path.erase(std::unique(path.begin(), path.end()), path.end());
|
||||
if (is_closed_path)
|
||||
while (path.size() > 1 && path.back() == path.front()) path.pop_back();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void StripDuplicates( Paths<T>& paths, bool is_closed_path)
|
||||
{
|
||||
for (typename Paths<T>::iterator paths_citer = paths.begin();
|
||||
paths_citer != paths.end(); ++paths_citer)
|
||||
{
|
||||
StripDuplicates(*paths_citer, is_closed_path);
|
||||
}
|
||||
}
|
||||
|
||||
// Miscellaneous ------------------------------------------------------------
|
||||
|
||||
inline void CheckPrecision(int& precision, int& error_code)
|
||||
{
|
||||
if (precision >= -MAX_DECIMAL_PRECISION && precision <= MAX_DECIMAL_PRECISION) return;
|
||||
error_code |= precision_error_i; // non-fatal error
|
||||
DoError(precision_error_i); // does nothing unless exceptions enabled
|
||||
precision = precision > 0 ? MAX_DECIMAL_PRECISION : -MAX_DECIMAL_PRECISION;
|
||||
}
|
||||
|
||||
inline void CheckPrecision(int& precision)
|
||||
{
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double CrossProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
|
||||
return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.y -
|
||||
pt2.y) - static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.x - pt2.x));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double CrossProduct(const Point<T>& vec1, const Point<T>& vec2)
|
||||
{
|
||||
return static_cast<double>(vec1.y * vec2.x) - static_cast<double>(vec2.y * vec1.x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double DotProduct(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3) {
|
||||
return (static_cast<double>(pt2.x - pt1.x) * static_cast<double>(pt3.x - pt2.x) +
|
||||
static_cast<double>(pt2.y - pt1.y) * static_cast<double>(pt3.y - pt2.y));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double DotProduct(const Point<T>& vec1, const Point<T>& vec2)
|
||||
{
|
||||
return static_cast<double>(vec1.x * vec2.x) + static_cast<double>(vec1.y * vec2.y);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double DistanceSqr(const Point<T> pt1, const Point<T> pt2)
|
||||
{
|
||||
return Sqr(pt1.x - pt2.x) + Sqr(pt1.y - pt2.y);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double DistanceFromLineSqrd(const Point<T>& pt, const Point<T>& ln1, const Point<T>& ln2)
|
||||
{
|
||||
//perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
|
||||
//see http://en.wikipedia.org/wiki/Perpendicular_distance
|
||||
double A = static_cast<double>(ln1.y - ln2.y);
|
||||
double B = static_cast<double>(ln2.x - ln1.x);
|
||||
double C = A * ln1.x + B * ln1.y;
|
||||
C = A * pt.x + B * pt.y - C;
|
||||
return (C * C) / (A * A + B * B);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double Area(const Path<T>& path)
|
||||
{
|
||||
size_t cnt = path.size();
|
||||
if (cnt < 3) return 0.0;
|
||||
double a = 0.0;
|
||||
typename Path<T>::const_iterator it1, it2 = path.cend() - 1, stop = it2;
|
||||
if (!(cnt & 1)) ++stop;
|
||||
for (it1 = path.cbegin(); it1 != stop;)
|
||||
{
|
||||
a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
|
||||
it2 = it1 + 1;
|
||||
a += static_cast<double>(it1->y + it2->y) * (it1->x - it2->x);
|
||||
it1 += 2;
|
||||
}
|
||||
if (cnt & 1)
|
||||
a += static_cast<double>(it2->y + it1->y) * (it2->x - it1->x);
|
||||
return a * 0.5;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double Area(const Paths<T>& paths)
|
||||
{
|
||||
double a = 0.0;
|
||||
for (typename Paths<T>::const_iterator paths_iter = paths.cbegin();
|
||||
paths_iter != paths.cend(); ++paths_iter)
|
||||
{
|
||||
a += Area<T>(*paths_iter);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline bool IsPositive(const Path<T>& poly)
|
||||
{
|
||||
// A curve has positive orientation [and area] if a region 'R'
|
||||
// is on the left when traveling around the outside of 'R'.
|
||||
//https://mathworld.wolfram.com/CurveOrientation.html
|
||||
//nb: This statement is premised on using Cartesian coordinates
|
||||
return Area<T>(poly) >= 0;
|
||||
}
|
||||
|
||||
inline bool GetIntersectPoint(const Point64& ln1a, const Point64& ln1b,
|
||||
const Point64& ln2a, const Point64& ln2b, Point64& ip)
|
||||
{
|
||||
// https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
|
||||
double dx1 = static_cast<double>(ln1b.x - ln1a.x);
|
||||
double dy1 = static_cast<double>(ln1b.y - ln1a.y);
|
||||
double dx2 = static_cast<double>(ln2b.x - ln2a.x);
|
||||
double dy2 = static_cast<double>(ln2b.y - ln2a.y);
|
||||
|
||||
double det = dy1 * dx2 - dy2 * dx1;
|
||||
if (det == 0.0) return false;
|
||||
double t = ((ln1a.x - ln2a.x) * dy2 - (ln1a.y - ln2a.y) * dx2) / det;
|
||||
if (t <= 0.0) ip = ln1a; // ?? check further (see also #568)
|
||||
else if (t >= 1.0) ip = ln1b; // ?? check further
|
||||
else
|
||||
{
|
||||
ip.x = static_cast<int64_t>(ln1a.x + t * dx1);
|
||||
ip.y = static_cast<int64_t>(ln1a.y + t * dy1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool SegmentsIntersect(const Point64& seg1a, const Point64& seg1b,
|
||||
const Point64& seg2a, const Point64& seg2b, bool inclusive = false)
|
||||
{
|
||||
if (inclusive)
|
||||
{
|
||||
double res1 = CrossProduct(seg1a, seg2a, seg2b);
|
||||
double res2 = CrossProduct(seg1b, seg2a, seg2b);
|
||||
if (res1 * res2 > 0) return false;
|
||||
double res3 = CrossProduct(seg2a, seg1a, seg1b);
|
||||
double res4 = CrossProduct(seg2b, seg1a, seg1b);
|
||||
if (res3 * res4 > 0) return false;
|
||||
return (res1 || res2 || res3 || res4); // ensures not collinear
|
||||
}
|
||||
else {
|
||||
return (CrossProduct(seg1a, seg2a, seg2b) *
|
||||
CrossProduct(seg1b, seg2a, seg2b) < 0) &&
|
||||
(CrossProduct(seg2a, seg1a, seg1b) *
|
||||
CrossProduct(seg2b, seg1a, seg1b) < 0);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline Point<T> GetClosestPointOnSegment(const Point<T>& offPt,
|
||||
const Point<T>& seg1, const Point<T>& seg2)
|
||||
{
|
||||
if (seg1.x == seg2.x && seg1.y == seg2.y) return seg1;
|
||||
double dx = static_cast<double>(seg2.x - seg1.x);
|
||||
double dy = static_cast<double>(seg2.y - seg1.y);
|
||||
double q =
|
||||
(static_cast<double>(offPt.x - seg1.x) * dx +
|
||||
static_cast<double>(offPt.y - seg1.y) * dy) /
|
||||
(Sqr(dx) + Sqr(dy));
|
||||
if (q < 0) q = 0; else if (q > 1) q = 1;
|
||||
if constexpr (std::numeric_limits<T>::is_integer)
|
||||
return Point<T>(
|
||||
seg1.x + static_cast<T>(nearbyint(q * dx)),
|
||||
seg1.y + static_cast<T>(nearbyint(q * dy)));
|
||||
else
|
||||
return Point<T>(
|
||||
seg1.x + static_cast<T>(q * dx),
|
||||
seg1.y + static_cast<T>(q * dy));
|
||||
}
|
||||
|
||||
enum class PointInPolygonResult { IsOn, IsInside, IsOutside };
|
||||
|
||||
template <typename T>
|
||||
inline PointInPolygonResult PointInPolygon(const Point<T>& pt, const Path<T>& polygon)
|
||||
{
|
||||
if (polygon.size() < 3)
|
||||
return PointInPolygonResult::IsOutside;
|
||||
|
||||
int val = 0;
|
||||
typename Path<T>::const_iterator cbegin = polygon.cbegin(), first = cbegin, curr, prev;
|
||||
typename Path<T>::const_iterator cend = polygon.cend();
|
||||
|
||||
while (first != cend && first->y == pt.y) ++first;
|
||||
if (first == cend) // not a proper polygon
|
||||
return PointInPolygonResult::IsOutside;
|
||||
|
||||
bool is_above = first->y < pt.y, starting_above = is_above;
|
||||
curr = first +1;
|
||||
while (true)
|
||||
{
|
||||
if (curr == cend)
|
||||
{
|
||||
if (cend == first || first == cbegin) break;
|
||||
cend = first;
|
||||
curr = cbegin;
|
||||
}
|
||||
|
||||
if (is_above)
|
||||
{
|
||||
while (curr != cend && curr->y < pt.y) ++curr;
|
||||
if (curr == cend) continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
while (curr != cend && curr->y > pt.y) ++curr;
|
||||
if (curr == cend) continue;
|
||||
}
|
||||
|
||||
if (curr == cbegin)
|
||||
prev = polygon.cend() - 1; //nb: NOT cend (since might equal first)
|
||||
else
|
||||
prev = curr - 1;
|
||||
|
||||
if (curr->y == pt.y)
|
||||
{
|
||||
if (curr->x == pt.x ||
|
||||
(curr->y == prev->y &&
|
||||
((pt.x < prev->x) != (pt.x < curr->x))))
|
||||
return PointInPolygonResult::IsOn;
|
||||
++curr;
|
||||
if (curr == first) break;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (pt.x < curr->x && pt.x < prev->x)
|
||||
{
|
||||
// we're only interested in edges crossing on the left
|
||||
}
|
||||
else if (pt.x > prev->x && pt.x > curr->x)
|
||||
val = 1 - val; // toggle val
|
||||
else
|
||||
{
|
||||
double d = CrossProduct(*prev, *curr, pt);
|
||||
if (d == 0) return PointInPolygonResult::IsOn;
|
||||
if ((d < 0) == is_above) val = 1 - val;
|
||||
}
|
||||
is_above = !is_above;
|
||||
++curr;
|
||||
}
|
||||
|
||||
if (is_above != starting_above)
|
||||
{
|
||||
cend = polygon.cend();
|
||||
if (curr == cend) curr = cbegin;
|
||||
if (curr == cbegin) prev = cend - 1;
|
||||
else prev = curr - 1;
|
||||
double d = CrossProduct(*prev, *curr, pt);
|
||||
if (d == 0) return PointInPolygonResult::IsOn;
|
||||
if ((d < 0) == is_above) val = 1 - val;
|
||||
}
|
||||
|
||||
return (val == 0) ?
|
||||
PointInPolygonResult::IsOutside :
|
||||
PointInPolygonResult::IsInside;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // CLIPPER_CORE_H
|
||||
637
engine/thirdparty/clipper2/include/clipper2/clipper.engine.h
vendored
Normal file
637
engine/thirdparty/clipper2/include/clipper2/clipper.engine.h
vendored
Normal file
|
|
@ -0,0 +1,637 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 22 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : This is the main polygon clipping module *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_ENGINE_H
|
||||
#define CLIPPER_ENGINE_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <stdint.h> //#541
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <memory>
|
||||
|
||||
#include "clipper2/clipper.core.h"
|
||||
|
||||
namespace Clipper2Lib {
|
||||
|
||||
struct Scanline;
|
||||
struct IntersectNode;
|
||||
struct Active;
|
||||
struct Vertex;
|
||||
struct LocalMinima;
|
||||
struct OutRec;
|
||||
struct HorzSegment;
|
||||
|
||||
//Note: all clipping operations except for Difference are commutative.
|
||||
enum class ClipType { None, Intersection, Union, Difference, Xor };
|
||||
|
||||
enum class PathType { Subject, Clip };
|
||||
enum class JoinWith { None, Left, Right };
|
||||
|
||||
enum class VertexFlags : uint32_t {
|
||||
None = 0, OpenStart = 1, OpenEnd = 2, LocalMax = 4, LocalMin = 8
|
||||
};
|
||||
|
||||
constexpr enum VertexFlags operator &(enum VertexFlags a, enum VertexFlags b)
|
||||
{
|
||||
return (enum VertexFlags)(uint32_t(a) & uint32_t(b));
|
||||
}
|
||||
|
||||
constexpr enum VertexFlags operator |(enum VertexFlags a, enum VertexFlags b)
|
||||
{
|
||||
return (enum VertexFlags)(uint32_t(a) | uint32_t(b));
|
||||
}
|
||||
|
||||
struct Vertex {
|
||||
Point64 pt;
|
||||
Vertex* next = nullptr;
|
||||
Vertex* prev = nullptr;
|
||||
VertexFlags flags = VertexFlags::None;
|
||||
};
|
||||
|
||||
struct OutPt {
|
||||
Point64 pt;
|
||||
OutPt* next = nullptr;
|
||||
OutPt* prev = nullptr;
|
||||
OutRec* outrec;
|
||||
HorzSegment* horz = nullptr;
|
||||
|
||||
OutPt(const Point64& pt_, OutRec* outrec_): pt(pt_), outrec(outrec_) {
|
||||
next = this;
|
||||
prev = this;
|
||||
}
|
||||
};
|
||||
|
||||
class PolyPath;
|
||||
class PolyPath64;
|
||||
class PolyPathD;
|
||||
using PolyTree64 = PolyPath64;
|
||||
using PolyTreeD = PolyPathD;
|
||||
|
||||
struct OutRec;
|
||||
typedef std::vector<OutRec*> OutRecList;
|
||||
|
||||
//OutRec: contains a path in the clipping solution. Edges in the AEL will
|
||||
//have OutRec pointers assigned when they form part of the clipping solution.
|
||||
struct OutRec {
|
||||
size_t idx = 0;
|
||||
OutRec* owner = nullptr;
|
||||
Active* front_edge = nullptr;
|
||||
Active* back_edge = nullptr;
|
||||
OutPt* pts = nullptr;
|
||||
PolyPath* polypath = nullptr;
|
||||
OutRecList* splits = nullptr;
|
||||
OutRec* recursive_split = nullptr;
|
||||
Rect64 bounds = {};
|
||||
Path64 path;
|
||||
bool is_open = false;
|
||||
|
||||
~OutRec() {
|
||||
if (splits) delete splits;
|
||||
// nb: don't delete the split pointers
|
||||
// as these are owned by ClipperBase's outrec_list_
|
||||
};
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//Important: UP and DOWN here are premised on Y-axis positive down
|
||||
//displays, which is the orientation used in Clipper's development.
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Active {
|
||||
Point64 bot;
|
||||
Point64 top;
|
||||
int64_t curr_x = 0; //current (updated at every new scanline)
|
||||
double dx = 0.0;
|
||||
int wind_dx = 1; //1 or -1 depending on winding direction
|
||||
int wind_cnt = 0;
|
||||
int wind_cnt2 = 0; //winding count of the opposite polytype
|
||||
OutRec* outrec = nullptr;
|
||||
//AEL: 'active edge list' (Vatti's AET - active edge table)
|
||||
// a linked list of all edges (from left to right) that are present
|
||||
// (or 'active') within the current scanbeam (a horizontal 'beam' that
|
||||
// sweeps from bottom to top over the paths in the clipping operation).
|
||||
Active* prev_in_ael = nullptr;
|
||||
Active* next_in_ael = nullptr;
|
||||
//SEL: 'sorted edge list' (Vatti's ST - sorted table)
|
||||
// linked list used when sorting edges into their new positions at the
|
||||
// top of scanbeams, but also (re)used to process horizontals.
|
||||
Active* prev_in_sel = nullptr;
|
||||
Active* next_in_sel = nullptr;
|
||||
Active* jump = nullptr;
|
||||
Vertex* vertex_top = nullptr;
|
||||
LocalMinima* local_min = nullptr; // the bottom of an edge 'bound' (also Vatti)
|
||||
bool is_left_bound = false;
|
||||
JoinWith join_with = JoinWith::None;
|
||||
};
|
||||
|
||||
struct LocalMinima {
|
||||
Vertex* vertex;
|
||||
PathType polytype;
|
||||
bool is_open;
|
||||
LocalMinima(Vertex* v, PathType pt, bool open) :
|
||||
vertex(v), polytype(pt), is_open(open){}
|
||||
};
|
||||
|
||||
struct IntersectNode {
|
||||
Point64 pt;
|
||||
Active* edge1;
|
||||
Active* edge2;
|
||||
IntersectNode() : pt(Point64(0,0)), edge1(NULL), edge2(NULL) {}
|
||||
IntersectNode(Active* e1, Active* e2, Point64& pt_) :
|
||||
pt(pt_), edge1(e1), edge2(e2) {}
|
||||
};
|
||||
|
||||
struct HorzSegment {
|
||||
OutPt* left_op;
|
||||
OutPt* right_op = nullptr;
|
||||
bool left_to_right = true;
|
||||
HorzSegment() : left_op(nullptr) { }
|
||||
explicit HorzSegment(OutPt* op) : left_op(op) { }
|
||||
};
|
||||
|
||||
struct HorzJoin {
|
||||
OutPt* op1 = nullptr;
|
||||
OutPt* op2 = nullptr;
|
||||
HorzJoin() {};
|
||||
explicit HorzJoin(OutPt* ltr, OutPt* rtl) : op1(ltr), op2(rtl) { }
|
||||
};
|
||||
|
||||
#ifdef USINGZ
|
||||
typedef std::function<void(const Point64& e1bot, const Point64& e1top,
|
||||
const Point64& e2bot, const Point64& e2top, Point64& pt)> ZCallback64;
|
||||
|
||||
typedef std::function<void(const PointD& e1bot, const PointD& e1top,
|
||||
const PointD& e2bot, const PointD& e2top, PointD& pt)> ZCallbackD;
|
||||
#endif
|
||||
|
||||
typedef std::vector<HorzSegment> HorzSegmentList;
|
||||
typedef std::unique_ptr<LocalMinima> LocalMinima_ptr;
|
||||
typedef std::vector<LocalMinima_ptr> LocalMinimaList;
|
||||
typedef std::vector<IntersectNode> IntersectNodeList;
|
||||
|
||||
// ReuseableDataContainer64 ------------------------------------------------
|
||||
|
||||
class ReuseableDataContainer64 {
|
||||
private:
|
||||
friend class ClipperBase;
|
||||
LocalMinimaList minima_list_;
|
||||
std::vector<Vertex*> vertex_lists_;
|
||||
void AddLocMin(Vertex& vert, PathType polytype, bool is_open);
|
||||
public:
|
||||
virtual ~ReuseableDataContainer64();
|
||||
void Clear();
|
||||
void AddPaths(const Paths64& paths, PathType polytype, bool is_open);
|
||||
};
|
||||
|
||||
// ClipperBase -------------------------------------------------------------
|
||||
|
||||
class ClipperBase {
|
||||
private:
|
||||
ClipType cliptype_ = ClipType::None;
|
||||
FillRule fillrule_ = FillRule::EvenOdd;
|
||||
FillRule fillpos = FillRule::Positive;
|
||||
int64_t bot_y_ = 0;
|
||||
bool minima_list_sorted_ = false;
|
||||
bool using_polytree_ = false;
|
||||
Active* actives_ = nullptr;
|
||||
Active *sel_ = nullptr;
|
||||
LocalMinimaList minima_list_; //pointers in case of memory reallocs
|
||||
LocalMinimaList::iterator current_locmin_iter_;
|
||||
std::vector<Vertex*> vertex_lists_;
|
||||
std::priority_queue<int64_t> scanline_list_;
|
||||
IntersectNodeList intersect_nodes_;
|
||||
HorzSegmentList horz_seg_list_;
|
||||
std::vector<HorzJoin> horz_join_list_;
|
||||
void Reset();
|
||||
inline void InsertScanline(int64_t y);
|
||||
inline bool PopScanline(int64_t &y);
|
||||
inline bool PopLocalMinima(int64_t y, LocalMinima*& local_minima);
|
||||
void DisposeAllOutRecs();
|
||||
void DisposeVerticesAndLocalMinima();
|
||||
void DeleteEdges(Active*& e);
|
||||
inline void AddLocMin(Vertex &vert, PathType polytype, bool is_open);
|
||||
bool IsContributingClosed(const Active &e) const;
|
||||
inline bool IsContributingOpen(const Active &e) const;
|
||||
void SetWindCountForClosedPathEdge(Active &edge);
|
||||
void SetWindCountForOpenPathEdge(Active &e);
|
||||
void InsertLocalMinimaIntoAEL(int64_t bot_y);
|
||||
void InsertLeftEdge(Active &e);
|
||||
inline void PushHorz(Active &e);
|
||||
inline bool PopHorz(Active *&e);
|
||||
inline OutPt* StartOpenPath(Active &e, const Point64& pt);
|
||||
inline void UpdateEdgeIntoAEL(Active *e);
|
||||
OutPt* IntersectEdges(Active &e1, Active &e2, const Point64& pt);
|
||||
inline void DeleteFromAEL(Active &e);
|
||||
inline void AdjustCurrXAndCopyToSEL(const int64_t top_y);
|
||||
void DoIntersections(const int64_t top_y);
|
||||
void AddNewIntersectNode(Active &e1, Active &e2, const int64_t top_y);
|
||||
bool BuildIntersectList(const int64_t top_y);
|
||||
void ProcessIntersectList();
|
||||
void SwapPositionsInAEL(Active& edge1, Active& edge2);
|
||||
OutRec* NewOutRec();
|
||||
OutPt* AddOutPt(const Active &e, const Point64& pt);
|
||||
OutPt* AddLocalMinPoly(Active &e1, Active &e2,
|
||||
const Point64& pt, bool is_new = false);
|
||||
OutPt* AddLocalMaxPoly(Active &e1, Active &e2, const Point64& pt);
|
||||
void DoHorizontal(Active &horz);
|
||||
bool ResetHorzDirection(const Active &horz, const Vertex* max_vertex,
|
||||
int64_t &horz_left, int64_t &horz_right);
|
||||
void DoTopOfScanbeam(const int64_t top_y);
|
||||
Active *DoMaxima(Active &e);
|
||||
void JoinOutrecPaths(Active &e1, Active &e2);
|
||||
void FixSelfIntersects(OutRec* outrec);
|
||||
void DoSplitOp(OutRec* outRec, OutPt* splitOp);
|
||||
|
||||
inline void AddTrialHorzJoin(OutPt* op);
|
||||
void ConvertHorzSegsToJoins();
|
||||
void ProcessHorzJoins();
|
||||
|
||||
void Split(Active& e, const Point64& pt);
|
||||
inline void CheckJoinLeft(Active& e,
|
||||
const Point64& pt, bool check_curr_x = false);
|
||||
inline void CheckJoinRight(Active& e,
|
||||
const Point64& pt, bool check_curr_x = false);
|
||||
protected:
|
||||
bool preserve_collinear_ = true;
|
||||
bool reverse_solution_ = false;
|
||||
int error_code_ = 0;
|
||||
bool has_open_paths_ = false;
|
||||
bool succeeded_ = true;
|
||||
OutRecList outrec_list_; //pointers in case list memory reallocated
|
||||
bool ExecuteInternal(ClipType ct, FillRule ft, bool use_polytrees);
|
||||
void CleanCollinear(OutRec* outrec);
|
||||
bool CheckBounds(OutRec* outrec);
|
||||
bool CheckSplitOwner(OutRec* outrec, OutRecList* splits);
|
||||
void RecursiveCheckOwners(OutRec* outrec, PolyPath* polypath);
|
||||
#ifdef USINGZ
|
||||
ZCallback64 zCallback_ = nullptr;
|
||||
void SetZ(const Active& e1, const Active& e2, Point64& pt);
|
||||
#endif
|
||||
void CleanUp(); // unlike Clear, CleanUp preserves added paths
|
||||
void AddPath(const Path64& path, PathType polytype, bool is_open);
|
||||
void AddPaths(const Paths64& paths, PathType polytype, bool is_open);
|
||||
public:
|
||||
virtual ~ClipperBase();
|
||||
int ErrorCode() const { return error_code_; };
|
||||
void PreserveCollinear(bool val) { preserve_collinear_ = val; };
|
||||
bool PreserveCollinear() const { return preserve_collinear_;};
|
||||
void ReverseSolution(bool val) { reverse_solution_ = val; };
|
||||
bool ReverseSolution() const { return reverse_solution_; };
|
||||
void Clear();
|
||||
void AddReuseableData(const ReuseableDataContainer64& reuseable_data);
|
||||
#ifdef USINGZ
|
||||
int64_t DefaultZ = 0;
|
||||
#endif
|
||||
};
|
||||
|
||||
// PolyPath / PolyTree --------------------------------------------------------
|
||||
|
||||
//PolyTree: is intended as a READ-ONLY data structure for CLOSED paths returned
|
||||
//by clipping operations. While this structure is more complex than the
|
||||
//alternative Paths structure, it does preserve path 'ownership' - ie those
|
||||
//paths that contain (or own) other paths. This will be useful to some users.
|
||||
|
||||
class PolyPath {
|
||||
protected:
|
||||
PolyPath* parent_;
|
||||
public:
|
||||
PolyPath(PolyPath* parent = nullptr): parent_(parent){}
|
||||
virtual ~PolyPath() {};
|
||||
//https://en.cppreference.com/w/cpp/language/rule_of_three
|
||||
PolyPath(const PolyPath&) = delete;
|
||||
PolyPath& operator=(const PolyPath&) = delete;
|
||||
|
||||
unsigned Level() const
|
||||
{
|
||||
unsigned result = 0;
|
||||
const PolyPath* p = parent_;
|
||||
while (p) { ++result; p = p->parent_; }
|
||||
return result;
|
||||
}
|
||||
|
||||
virtual PolyPath* AddChild(const Path64& path) = 0;
|
||||
|
||||
virtual void Clear() = 0;
|
||||
virtual size_t Count() const { return 0; }
|
||||
|
||||
const PolyPath* Parent() const { return parent_; }
|
||||
|
||||
bool IsHole() const
|
||||
{
|
||||
unsigned lvl = Level();
|
||||
//Even levels except level 0
|
||||
return lvl && !(lvl & 1);
|
||||
}
|
||||
};
|
||||
|
||||
typedef typename std::vector<std::unique_ptr<PolyPath64>> PolyPath64List;
|
||||
typedef typename std::vector<std::unique_ptr<PolyPathD>> PolyPathDList;
|
||||
|
||||
class PolyPath64 : public PolyPath {
|
||||
private:
|
||||
PolyPath64List childs_;
|
||||
Path64 polygon_;
|
||||
public:
|
||||
explicit PolyPath64(PolyPath64* parent = nullptr) : PolyPath(parent) {}
|
||||
|
||||
~PolyPath64() {
|
||||
childs_.resize(0);
|
||||
}
|
||||
|
||||
PolyPath64* operator [] (size_t index) const
|
||||
{
|
||||
return childs_[index].get(); //std::unique_ptr
|
||||
}
|
||||
|
||||
PolyPath64* Child(size_t index) const
|
||||
{
|
||||
return childs_[index].get();
|
||||
}
|
||||
|
||||
PolyPath64List::const_iterator begin() const { return childs_.cbegin(); }
|
||||
PolyPath64List::const_iterator end() const { return childs_.cend(); }
|
||||
|
||||
PolyPath64* AddChild(const Path64& path) override
|
||||
{
|
||||
auto p = std::make_unique<PolyPath64>(this);
|
||||
auto* result = childs_.emplace_back(std::move(p)).get();
|
||||
result->polygon_ = path;
|
||||
return result;
|
||||
}
|
||||
|
||||
void Clear() override
|
||||
{
|
||||
childs_.resize(0);
|
||||
}
|
||||
|
||||
size_t Count() const override
|
||||
{
|
||||
return childs_.size();
|
||||
}
|
||||
|
||||
const Path64& Polygon() const { return polygon_; };
|
||||
|
||||
double Area() const
|
||||
{
|
||||
return std::accumulate(childs_.cbegin(), childs_.cend(),
|
||||
Clipper2Lib::Area<int64_t>(polygon_),
|
||||
[](double a, const auto& child) {return a + child->Area(); });
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class PolyPathD : public PolyPath {
|
||||
private:
|
||||
PolyPathDList childs_;
|
||||
double scale_;
|
||||
PathD polygon_;
|
||||
public:
|
||||
explicit PolyPathD(PolyPathD* parent = nullptr) : PolyPath(parent)
|
||||
{
|
||||
scale_ = parent ? parent->scale_ : 1.0;
|
||||
}
|
||||
|
||||
~PolyPathD() {
|
||||
childs_.resize(0);
|
||||
}
|
||||
|
||||
PolyPathD* operator [] (size_t index) const
|
||||
{
|
||||
return childs_[index].get();
|
||||
}
|
||||
|
||||
PolyPathD* Child(size_t index) const
|
||||
{
|
||||
return childs_[index].get();
|
||||
}
|
||||
|
||||
PolyPathDList::const_iterator begin() const { return childs_.cbegin(); }
|
||||
PolyPathDList::const_iterator end() const { return childs_.cend(); }
|
||||
|
||||
void SetScale(double value) { scale_ = value; }
|
||||
double Scale() const { return scale_; }
|
||||
|
||||
PolyPathD* AddChild(const Path64& path) override
|
||||
{
|
||||
int error_code = 0;
|
||||
auto p = std::make_unique<PolyPathD>(this);
|
||||
PolyPathD* result = childs_.emplace_back(std::move(p)).get();
|
||||
result->polygon_ = ScalePath<double, int64_t>(path, scale_, error_code);
|
||||
return result;
|
||||
}
|
||||
|
||||
PolyPathD* AddChild(const PathD& path)
|
||||
{
|
||||
auto p = std::make_unique<PolyPathD>(this);
|
||||
PolyPathD* result = childs_.emplace_back(std::move(p)).get();
|
||||
result->polygon_ = path;
|
||||
return result;
|
||||
}
|
||||
|
||||
void Clear() override
|
||||
{
|
||||
childs_.resize(0);
|
||||
}
|
||||
|
||||
size_t Count() const override
|
||||
{
|
||||
return childs_.size();
|
||||
}
|
||||
|
||||
const PathD& Polygon() const { return polygon_; };
|
||||
|
||||
double Area() const
|
||||
{
|
||||
return std::accumulate(childs_.begin(), childs_.end(),
|
||||
Clipper2Lib::Area<double>(polygon_),
|
||||
[](double a, const auto& child) {return a + child->Area(); });
|
||||
}
|
||||
};
|
||||
|
||||
class Clipper64 : public ClipperBase
|
||||
{
|
||||
private:
|
||||
void BuildPaths64(Paths64& solutionClosed, Paths64* solutionOpen);
|
||||
void BuildTree64(PolyPath64& polytree, Paths64& open_paths);
|
||||
public:
|
||||
#ifdef USINGZ
|
||||
void SetZCallback(ZCallback64 cb) { zCallback_ = cb; }
|
||||
#endif
|
||||
|
||||
void AddSubject(const Paths64& subjects)
|
||||
{
|
||||
AddPaths(subjects, PathType::Subject, false);
|
||||
}
|
||||
void AddOpenSubject(const Paths64& open_subjects)
|
||||
{
|
||||
AddPaths(open_subjects, PathType::Subject, true);
|
||||
}
|
||||
void AddClip(const Paths64& clips)
|
||||
{
|
||||
AddPaths(clips, PathType::Clip, false);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type,
|
||||
FillRule fill_rule, Paths64& closed_paths)
|
||||
{
|
||||
Paths64 dummy;
|
||||
return Execute(clip_type, fill_rule, closed_paths, dummy);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type, FillRule fill_rule,
|
||||
Paths64& closed_paths, Paths64& open_paths)
|
||||
{
|
||||
closed_paths.clear();
|
||||
open_paths.clear();
|
||||
if (ExecuteInternal(clip_type, fill_rule, false))
|
||||
BuildPaths64(closed_paths, &open_paths);
|
||||
CleanUp();
|
||||
return succeeded_;
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type, FillRule fill_rule, PolyTree64& polytree)
|
||||
{
|
||||
Paths64 dummy;
|
||||
return Execute(clip_type, fill_rule, polytree, dummy);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type,
|
||||
FillRule fill_rule, PolyTree64& polytree, Paths64& open_paths)
|
||||
{
|
||||
if (ExecuteInternal(clip_type, fill_rule, true))
|
||||
{
|
||||
open_paths.clear();
|
||||
polytree.Clear();
|
||||
BuildTree64(polytree, open_paths);
|
||||
}
|
||||
CleanUp();
|
||||
return succeeded_;
|
||||
}
|
||||
};
|
||||
|
||||
class ClipperD : public ClipperBase {
|
||||
private:
|
||||
double scale_ = 1.0, invScale_ = 1.0;
|
||||
#ifdef USINGZ
|
||||
ZCallbackD zCallbackD_ = nullptr;
|
||||
#endif
|
||||
void BuildPathsD(PathsD& solutionClosed, PathsD* solutionOpen);
|
||||
void BuildTreeD(PolyPathD& polytree, PathsD& open_paths);
|
||||
public:
|
||||
explicit ClipperD(int precision = 2) : ClipperBase()
|
||||
{
|
||||
CheckPrecision(precision, error_code_);
|
||||
// to optimize scaling / descaling precision
|
||||
// set the scale to a power of double's radix (2) (#25)
|
||||
scale_ = std::pow(std::numeric_limits<double>::radix,
|
||||
std::ilogb(std::pow(10, precision)) + 1);
|
||||
invScale_ = 1 / scale_;
|
||||
}
|
||||
|
||||
#ifdef USINGZ
|
||||
void SetZCallback(ZCallbackD cb) { zCallbackD_ = cb; };
|
||||
|
||||
void ZCB(const Point64& e1bot, const Point64& e1top,
|
||||
const Point64& e2bot, const Point64& e2top, Point64& pt)
|
||||
{
|
||||
// de-scale (x & y)
|
||||
// temporarily convert integers to their initial float values
|
||||
// this will slow clipping marginally but will make it much easier
|
||||
// to understand the coordinates passed to the callback function
|
||||
PointD tmp = PointD(pt) * invScale_;
|
||||
PointD e1b = PointD(e1bot) * invScale_;
|
||||
PointD e1t = PointD(e1top) * invScale_;
|
||||
PointD e2b = PointD(e2bot) * invScale_;
|
||||
PointD e2t = PointD(e2top) * invScale_;
|
||||
zCallbackD_(e1b,e1t, e2b, e2t, tmp);
|
||||
pt.z = tmp.z; // only update 'z'
|
||||
};
|
||||
|
||||
void CheckCallback()
|
||||
{
|
||||
if(zCallbackD_)
|
||||
// if the user defined float point callback has been assigned
|
||||
// then assign the proxy callback function
|
||||
ClipperBase::zCallback_ =
|
||||
std::bind(&ClipperD::ZCB, this, std::placeholders::_1,
|
||||
std::placeholders::_2, std::placeholders::_3,
|
||||
std::placeholders::_4, std::placeholders::_5);
|
||||
else
|
||||
ClipperBase::zCallback_ = nullptr;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void AddSubject(const PathsD& subjects)
|
||||
{
|
||||
AddPaths(ScalePaths<int64_t, double>(subjects, scale_, error_code_), PathType::Subject, false);
|
||||
}
|
||||
|
||||
void AddOpenSubject(const PathsD& open_subjects)
|
||||
{
|
||||
AddPaths(ScalePaths<int64_t, double>(open_subjects, scale_, error_code_), PathType::Subject, true);
|
||||
}
|
||||
|
||||
void AddClip(const PathsD& clips)
|
||||
{
|
||||
AddPaths(ScalePaths<int64_t, double>(clips, scale_, error_code_), PathType::Clip, false);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type, FillRule fill_rule, PathsD& closed_paths)
|
||||
{
|
||||
PathsD dummy;
|
||||
return Execute(clip_type, fill_rule, closed_paths, dummy);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type,
|
||||
FillRule fill_rule, PathsD& closed_paths, PathsD& open_paths)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
CheckCallback();
|
||||
#endif
|
||||
if (ExecuteInternal(clip_type, fill_rule, false))
|
||||
{
|
||||
BuildPathsD(closed_paths, &open_paths);
|
||||
}
|
||||
CleanUp();
|
||||
return succeeded_;
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type, FillRule fill_rule, PolyTreeD& polytree)
|
||||
{
|
||||
PathsD dummy;
|
||||
return Execute(clip_type, fill_rule, polytree, dummy);
|
||||
}
|
||||
|
||||
bool Execute(ClipType clip_type,
|
||||
FillRule fill_rule, PolyTreeD& polytree, PathsD& open_paths)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
CheckCallback();
|
||||
#endif
|
||||
if (ExecuteInternal(clip_type, fill_rule, true))
|
||||
{
|
||||
polytree.Clear();
|
||||
polytree.SetScale(invScale_);
|
||||
open_paths.clear();
|
||||
BuildTreeD(polytree, open_paths);
|
||||
}
|
||||
CleanUp();
|
||||
return succeeded_;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // CLIPPER_ENGINE_H
|
||||
565
engine/thirdparty/clipper2/include/clipper2/clipper.export.h
vendored
Normal file
565
engine/thirdparty/clipper2/include/clipper2/clipper.export.h
vendored
Normal file
|
|
@ -0,0 +1,565 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 26 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : This module exports the Clipper2 Library (ie DLL/so) *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
|
||||
/*
|
||||
Boolean clipping:
|
||||
cliptype: None=0, Intersection=1, Union=2, Difference=3, Xor=4
|
||||
fillrule: EvenOdd=0, NonZero=1, Positive=2, Negative=3
|
||||
|
||||
Polygon offsetting (inflate/deflate):
|
||||
jointype: Square=0, Bevel=1, Round=2, Miter=3
|
||||
endtype: Polygon=0, Joined=1, Butt=2, Square=3, Round=4
|
||||
|
||||
The path structures used extensively in other parts of this library are all
|
||||
based on std::vector classes. Since C++ classes can't be accessed by other
|
||||
languages, these paths must be converted into simple C data structures that
|
||||
can be understood by just about any programming language. And these C style
|
||||
path structures are simple arrays of int64_t (CPath64) and double (CPathD).
|
||||
|
||||
CPath64 and CPathD:
|
||||
These are arrays of consecutive x and y path coordinates preceeded by
|
||||
a pair of values containing the path's length (N) and a 0 value.
|
||||
__________________________________
|
||||
|counter|coord1|coord2|...|coordN|
|
||||
|N, 0 |x1, y1|x2, y2|...|xN, yN|
|
||||
__________________________________
|
||||
|
||||
CPaths64 and CPathsD:
|
||||
These are also arrays containing any number of consecutive CPath64 or
|
||||
CPathD structures. But preceeding these consecutive paths, there is pair of
|
||||
values that contain the total length of the array (A) structure and
|
||||
the number (C) of CPath64 or CPathD it contains.
|
||||
_______________________________
|
||||
|counter|path1|path2|...|pathC|
|
||||
|A , C | |
|
||||
_______________________________
|
||||
|
||||
CPolytree64 and CPolytreeD:
|
||||
These are also arrays consisting of CPolyPath structures that represent
|
||||
individual paths in a tree structure. However, the very first (ie top)
|
||||
CPolyPath is just the tree container that won't have a path. And because
|
||||
of that, its structure will be very slightly different from the remaining
|
||||
CPolyPath. This difference will be discussed below.
|
||||
|
||||
CPolyPath64 and CPolyPathD:
|
||||
These are simple arrays consisting of a series of path coordinates followed
|
||||
by any number of child (ie nested) CPolyPath. Preceeding these are two values
|
||||
indicating the length of the path (N) and the number of child CPolyPath (C).
|
||||
____________________________________________________________
|
||||
|counter|coord1|coord2|...|coordN| child1|child2|...|childC|
|
||||
|N , C |x1, y1|x2, y2|...|xN, yN| |
|
||||
____________________________________________________________
|
||||
|
||||
As mentioned above, the very first CPolyPath structure is just a container
|
||||
that owns (both directly and indirectly) every other CPolyPath in the tree.
|
||||
Since this first CPolyPath has no path, instead of a path length, its very
|
||||
first value will contain the total length of the CPolytree array structure.
|
||||
|
||||
All theses exported structures (CPaths64, CPathsD, CPolyTree64 & CPolyTreeD)
|
||||
are arrays of type int64_t or double. And the first value in these arrays
|
||||
will always contain the length of that array.
|
||||
|
||||
These array structures are allocated in heap memory which will eventually
|
||||
need to be released. But since applications dynamically linking to these
|
||||
functions may use different memory managers, the only safe way to free up
|
||||
this memory is to use the exported DisposeArray64 and DisposeArrayD
|
||||
functions below.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef CLIPPER2_EXPORT_H
|
||||
#define CLIPPER2_EXPORT_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
#include "clipper2/clipper.core.h"
|
||||
#include "clipper2/clipper.engine.h"
|
||||
#include "clipper2/clipper.offset.h"
|
||||
#include "clipper2/clipper.rectclip.h"
|
||||
|
||||
namespace Clipper2Lib {
|
||||
|
||||
typedef int64_t* CPath64;
|
||||
typedef int64_t* CPaths64;
|
||||
typedef double* CPathD;
|
||||
typedef double* CPathsD;
|
||||
|
||||
typedef int64_t* CPolyPath64;
|
||||
typedef int64_t* CPolyTree64;
|
||||
typedef double* CPolyPathD;
|
||||
typedef double* CPolyTreeD;
|
||||
|
||||
template <typename T>
|
||||
struct CRect {
|
||||
T left;
|
||||
T top;
|
||||
T right;
|
||||
T bottom;
|
||||
};
|
||||
|
||||
typedef CRect<int64_t> CRect64;
|
||||
typedef CRect<double> CRectD;
|
||||
|
||||
template <typename T>
|
||||
inline bool CRectIsEmpty(const CRect<T>& rect)
|
||||
{
|
||||
return (rect.right <= rect.left) || (rect.bottom <= rect.top);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Rect<T> CRectToRect(const CRect<T>& rect)
|
||||
{
|
||||
Rect<T> result;
|
||||
result.left = rect.left;
|
||||
result.top = rect.top;
|
||||
result.right = rect.right;
|
||||
result.bottom = rect.bottom;
|
||||
return result;
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
#define EXTERN_DLL_EXPORT extern "C" __declspec(dllexport)
|
||||
#else
|
||||
#define EXTERN_DLL_EXPORT extern "C"
|
||||
#endif
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// EXPORTED FUNCTION DECLARATIONS
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
EXTERN_DLL_EXPORT const char* Version();
|
||||
|
||||
EXTERN_DLL_EXPORT void DisposeArray64(int64_t*& p)
|
||||
{
|
||||
delete[] p;
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT void DisposeArrayD(double*& p)
|
||||
{
|
||||
delete[] p;
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp64(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPaths64 subjects,
|
||||
const CPaths64 subjects_open, const CPaths64 clips,
|
||||
CPaths64& solution, CPaths64& solution_open,
|
||||
bool preserve_collinear = true, bool reverse_solution = false);
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp_PolyTree64(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPaths64 subjects,
|
||||
const CPaths64 subjects_open, const CPaths64 clips,
|
||||
CPolyTree64& sol_tree, CPaths64& solution_open,
|
||||
bool preserve_collinear = true, bool reverse_solution = false);
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOpD(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPathsD subjects,
|
||||
const CPathsD subjects_open, const CPathsD clips,
|
||||
CPathsD& solution, CPathsD& solution_open, int precision = 2,
|
||||
bool preserve_collinear = true, bool reverse_solution = false);
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp_PolyTreeD(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPathsD subjects,
|
||||
const CPathsD subjects_open, const CPathsD clips,
|
||||
CPolyTreeD& solution, CPathsD& solution_open, int precision = 2,
|
||||
bool preserve_collinear = true, bool reverse_solution = false);
|
||||
|
||||
EXTERN_DLL_EXPORT CPaths64 InflatePaths64(const CPaths64 paths,
|
||||
double delta, uint8_t jointype, uint8_t endtype,
|
||||
double miter_limit = 2.0, double arc_tolerance = 0.0,
|
||||
bool reverse_solution = false);
|
||||
EXTERN_DLL_EXPORT CPathsD InflatePathsD(const CPathsD paths,
|
||||
double delta, uint8_t jointype, uint8_t endtype,
|
||||
int precision = 2, double miter_limit = 2.0,
|
||||
double arc_tolerance = 0.0, bool reverse_solution = false);
|
||||
|
||||
// RectClip & RectClipLines:
|
||||
EXTERN_DLL_EXPORT CPaths64 RectClip64(const CRect64& rect,
|
||||
const CPaths64 paths);
|
||||
EXTERN_DLL_EXPORT CPathsD RectClipD(const CRectD& rect,
|
||||
const CPathsD paths, int precision = 2);
|
||||
EXTERN_DLL_EXPORT CPaths64 RectClipLines64(const CRect64& rect,
|
||||
const CPaths64 paths);
|
||||
EXTERN_DLL_EXPORT CPathsD RectClipLinesD(const CRectD& rect,
|
||||
const CPathsD paths, int precision = 2);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// INTERNAL FUNCTIONS
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
static void GetPathCountAndCPathsArrayLen(const Paths<T>& paths,
|
||||
size_t& cnt, size_t& array_len)
|
||||
{
|
||||
array_len = 2;
|
||||
cnt = 0;
|
||||
for (const Path<T>& path : paths)
|
||||
if (path.size())
|
||||
{
|
||||
array_len += path.size() * 2 + 2;
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
|
||||
static size_t GetPolyPath64ArrayLen(const PolyPath64& pp)
|
||||
{
|
||||
size_t result = 2; // poly_length + child_count
|
||||
result += pp.Polygon().size() * 2;
|
||||
//plus nested children :)
|
||||
for (size_t i = 0; i < pp.Count(); ++i)
|
||||
result += GetPolyPath64ArrayLen(*pp[i]);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void GetPolytreeCountAndCStorageSize(const PolyTree64& tree,
|
||||
size_t& cnt, size_t& array_len)
|
||||
{
|
||||
cnt = tree.Count(); // nb: top level count only
|
||||
array_len = GetPolyPath64ArrayLen(tree);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T* CreateCPaths(const Paths<T>& paths)
|
||||
{
|
||||
size_t cnt = 0, array_len = 0;
|
||||
GetPathCountAndCPathsArrayLen(paths, cnt, array_len);
|
||||
T* result = new T[array_len], * v = result;
|
||||
*v++ = array_len;
|
||||
*v++ = cnt;
|
||||
for (const Path<T>& path : paths)
|
||||
{
|
||||
if (!path.size()) continue;
|
||||
*v++ = path.size();
|
||||
*v++ = 0;
|
||||
for (const Point<T>& pt : path)
|
||||
{
|
||||
*v++ = pt.x;
|
||||
*v++ = pt.y;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
CPathsD CreateCPathsDFromPaths64(const Paths64& paths, double scale)
|
||||
{
|
||||
if (!paths.size()) return nullptr;
|
||||
size_t cnt, array_len;
|
||||
GetPathCountAndCPathsArrayLen(paths, cnt, array_len);
|
||||
CPathsD result = new double[array_len], v = result;
|
||||
*v++ = (double)array_len;
|
||||
*v++ = (double)cnt;
|
||||
for (const Path64& path : paths)
|
||||
{
|
||||
if (!path.size()) continue;
|
||||
*v = (double)path.size();
|
||||
++v; *v++ = 0;
|
||||
for (const Point64& pt : path)
|
||||
{
|
||||
*v++ = pt.x * scale;
|
||||
*v++ = pt.y * scale;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static Paths<T> ConvertCPaths(T* paths)
|
||||
{
|
||||
Paths<T> result;
|
||||
if (!paths) return result;
|
||||
T* v = paths; ++v;
|
||||
size_t cnt = *v++;
|
||||
result.reserve(cnt);
|
||||
for (size_t i = 0; i < cnt; ++i)
|
||||
{
|
||||
size_t cnt2 = *v;
|
||||
v += 2;
|
||||
Path<T> path;
|
||||
path.reserve(cnt2);
|
||||
for (size_t j = 0; j < cnt2; ++j)
|
||||
{
|
||||
T x = *v++, y = *v++;
|
||||
path.push_back(Point<T>(x, y));
|
||||
}
|
||||
result.push_back(path);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static Paths64 ConvertCPathsDToPaths64(const CPathsD paths, double scale)
|
||||
{
|
||||
Paths64 result;
|
||||
if (!paths) return result;
|
||||
double* v = paths;
|
||||
++v; // skip the first value (0)
|
||||
int64_t cnt = (int64_t)*v++;
|
||||
result.reserve(cnt);
|
||||
for (int i = 0; i < cnt; ++i)
|
||||
{
|
||||
int64_t cnt2 = (int64_t)*v;
|
||||
v += 2;
|
||||
Path64 path;
|
||||
path.reserve(cnt2);
|
||||
for (int j = 0; j < cnt2; ++j)
|
||||
{
|
||||
double x = *v++ * scale;
|
||||
double y = *v++ * scale;
|
||||
path.push_back(Point64(x, y));
|
||||
}
|
||||
result.push_back(path);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void CreateCPolyPath(const PolyPath64* pp, T*& v, T scale)
|
||||
{
|
||||
*v++ = static_cast<T>(pp->Polygon().size());
|
||||
*v++ = static_cast<T>(pp->Count());
|
||||
for (const Point64& pt : pp->Polygon())
|
||||
{
|
||||
*v++ = static_cast<T>(pt.x * scale);
|
||||
*v++ = static_cast<T>(pt.y * scale);
|
||||
}
|
||||
for (size_t i = 0; i < pp->Count(); ++i)
|
||||
CreateCPolyPath(pp->Child(i), v, scale);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T* CreateCPolyTree(const PolyTree64& tree, T scale)
|
||||
{
|
||||
if (scale == 0) scale = 1;
|
||||
size_t cnt, array_len;
|
||||
GetPolytreeCountAndCStorageSize(tree, cnt, array_len);
|
||||
if (!cnt) return nullptr;
|
||||
// allocate storage
|
||||
T* result = new T[array_len];
|
||||
T* v = result;
|
||||
|
||||
*v++ = static_cast<T>(array_len);
|
||||
*v++ = static_cast<T>(tree.Count());
|
||||
for (size_t i = 0; i < tree.Count(); ++i)
|
||||
CreateCPolyPath(tree.Child(i), v, scale);
|
||||
return result;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// EXPORTED FUNCTION DEFINITIONS
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
EXTERN_DLL_EXPORT const char* Version()
|
||||
{
|
||||
return CLIPPER2_VERSION;
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp64(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPaths64 subjects,
|
||||
const CPaths64 subjects_open, const CPaths64 clips,
|
||||
CPaths64& solution, CPaths64& solution_open,
|
||||
bool preserve_collinear, bool reverse_solution)
|
||||
{
|
||||
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
|
||||
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
|
||||
|
||||
Paths64 sub, sub_open, clp, sol, sol_open;
|
||||
sub = ConvertCPaths(subjects);
|
||||
sub_open = ConvertCPaths(subjects_open);
|
||||
clp = ConvertCPaths(clips);
|
||||
|
||||
Clipper64 clipper;
|
||||
clipper.PreserveCollinear(preserve_collinear);
|
||||
clipper.ReverseSolution(reverse_solution);
|
||||
if (sub.size() > 0) clipper.AddSubject(sub);
|
||||
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
|
||||
if (clp.size() > 0) clipper.AddClip(clp);
|
||||
if (!clipper.Execute(ClipType(cliptype), FillRule(fillrule), sol, sol_open))
|
||||
return -1; // clipping bug - should never happen :)
|
||||
solution = CreateCPaths(sol);
|
||||
solution_open = CreateCPaths(sol_open);
|
||||
return 0; //success !!
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp_PolyTree64(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPaths64 subjects,
|
||||
const CPaths64 subjects_open, const CPaths64 clips,
|
||||
CPolyTree64& sol_tree, CPaths64& solution_open,
|
||||
bool preserve_collinear, bool reverse_solution)
|
||||
{
|
||||
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
|
||||
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
|
||||
Paths64 sub, sub_open, clp, sol_open;
|
||||
sub = ConvertCPaths(subjects);
|
||||
sub_open = ConvertCPaths(subjects_open);
|
||||
clp = ConvertCPaths(clips);
|
||||
|
||||
PolyTree64 tree;
|
||||
Clipper64 clipper;
|
||||
clipper.PreserveCollinear(preserve_collinear);
|
||||
clipper.ReverseSolution(reverse_solution);
|
||||
if (sub.size() > 0) clipper.AddSubject(sub);
|
||||
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
|
||||
if (clp.size() > 0) clipper.AddClip(clp);
|
||||
if (!clipper.Execute(ClipType(cliptype), FillRule(fillrule), tree, sol_open))
|
||||
return -1; // clipping bug - should never happen :)
|
||||
|
||||
sol_tree = CreateCPolyTree(tree, (int64_t)1);
|
||||
solution_open = CreateCPaths(sol_open);
|
||||
return 0; //success !!
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOpD(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPathsD subjects,
|
||||
const CPathsD subjects_open, const CPathsD clips,
|
||||
CPathsD& solution, CPathsD& solution_open, int precision,
|
||||
bool preserve_collinear, bool reverse_solution)
|
||||
{
|
||||
if (precision < -8 || precision > 8) return -5;
|
||||
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
|
||||
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
|
||||
const double scale = std::pow(10, precision);
|
||||
|
||||
Paths64 sub, sub_open, clp, sol, sol_open;
|
||||
sub = ConvertCPathsDToPaths64(subjects, scale);
|
||||
sub_open = ConvertCPathsDToPaths64(subjects_open, scale);
|
||||
clp = ConvertCPathsDToPaths64(clips, scale);
|
||||
|
||||
Clipper64 clipper;
|
||||
clipper.PreserveCollinear(preserve_collinear);
|
||||
clipper.ReverseSolution(reverse_solution);
|
||||
if (sub.size() > 0) clipper.AddSubject(sub);
|
||||
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
|
||||
if (clp.size() > 0) clipper.AddClip(clp);
|
||||
if (!clipper.Execute(ClipType(cliptype),
|
||||
FillRule(fillrule), sol, sol_open)) return -1;
|
||||
solution = CreateCPathsDFromPaths64(sol, 1 / scale);
|
||||
solution_open = CreateCPathsDFromPaths64(sol_open, 1 / scale);
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT int BooleanOp_PolyTreeD(uint8_t cliptype,
|
||||
uint8_t fillrule, const CPathsD subjects,
|
||||
const CPathsD subjects_open, const CPathsD clips,
|
||||
CPolyTreeD& solution, CPathsD& solution_open, int precision,
|
||||
bool preserve_collinear, bool reverse_solution)
|
||||
{
|
||||
if (precision < -8 || precision > 8) return -5;
|
||||
if (cliptype > static_cast<uint8_t>(ClipType::Xor)) return -4;
|
||||
if (fillrule > static_cast<uint8_t>(FillRule::Negative)) return -3;
|
||||
|
||||
double scale = std::pow(10, precision);
|
||||
|
||||
int err = 0;
|
||||
Paths64 sub, sub_open, clp, sol_open;
|
||||
sub = ConvertCPathsDToPaths64(subjects, scale);
|
||||
sub_open = ConvertCPathsDToPaths64(subjects_open, scale);
|
||||
clp = ConvertCPathsDToPaths64(clips, scale);
|
||||
|
||||
PolyTree64 tree;
|
||||
Clipper64 clipper;
|
||||
clipper.PreserveCollinear(preserve_collinear);
|
||||
clipper.ReverseSolution(reverse_solution);
|
||||
if (sub.size() > 0) clipper.AddSubject(sub);
|
||||
if (sub_open.size() > 0) clipper.AddOpenSubject(sub_open);
|
||||
if (clp.size() > 0) clipper.AddClip(clp);
|
||||
if (!clipper.Execute(ClipType(cliptype), FillRule(fillrule), tree, sol_open))
|
||||
return -1; // clipping bug - should never happen :)
|
||||
|
||||
solution = CreateCPolyTree(tree, 1/scale);
|
||||
solution_open = CreateCPathsDFromPaths64(sol_open, 1 / scale);
|
||||
return 0; //success !!
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPaths64 InflatePaths64(const CPaths64 paths,
|
||||
double delta, uint8_t jointype, uint8_t endtype, double miter_limit,
|
||||
double arc_tolerance, bool reverse_solution)
|
||||
{
|
||||
Paths64 pp;
|
||||
pp = ConvertCPaths(paths);
|
||||
ClipperOffset clip_offset( miter_limit,
|
||||
arc_tolerance, reverse_solution);
|
||||
clip_offset.AddPaths(pp, JoinType(jointype), EndType(endtype));
|
||||
Paths64 result;
|
||||
clip_offset.Execute(delta, result);
|
||||
return CreateCPaths(result);
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPathsD InflatePathsD(const CPathsD paths,
|
||||
double delta, uint8_t jointype, uint8_t endtype,
|
||||
int precision, double miter_limit,
|
||||
double arc_tolerance, bool reverse_solution)
|
||||
{
|
||||
if (precision < -8 || precision > 8 || !paths) return nullptr;
|
||||
|
||||
const double scale = std::pow(10, precision);
|
||||
ClipperOffset clip_offset(miter_limit, arc_tolerance, reverse_solution);
|
||||
Paths64 pp = ConvertCPathsDToPaths64(paths, scale);
|
||||
clip_offset.AddPaths(pp, JoinType(jointype), EndType(endtype));
|
||||
Paths64 result;
|
||||
clip_offset.Execute(delta * scale, result);
|
||||
|
||||
return CreateCPathsDFromPaths64(result, 1 / scale);
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPaths64 RectClip64(const CRect64& rect, const CPaths64 paths)
|
||||
{
|
||||
if (CRectIsEmpty(rect) || !paths) return nullptr;
|
||||
Rect64 r64 = CRectToRect(rect);
|
||||
class RectClip64 rc(r64);
|
||||
Paths64 pp = ConvertCPaths(paths);
|
||||
Paths64 result = rc.Execute(pp);
|
||||
return CreateCPaths(result);
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPathsD RectClipD(const CRectD& rect, const CPathsD paths, int precision)
|
||||
{
|
||||
if (CRectIsEmpty(rect) || !paths) return nullptr;
|
||||
if (precision < -8 || precision > 8) return nullptr;
|
||||
const double scale = std::pow(10, precision);
|
||||
|
||||
RectD r = CRectToRect(rect);
|
||||
Rect64 rec = ScaleRect<int64_t, double>(r, scale);
|
||||
Paths64 pp = ConvertCPathsDToPaths64(paths, scale);
|
||||
class RectClip64 rc(rec);
|
||||
Paths64 result = rc.Execute(pp);
|
||||
|
||||
return CreateCPathsDFromPaths64(result, 1 / scale);
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPaths64 RectClipLines64(const CRect64& rect,
|
||||
const CPaths64 paths)
|
||||
{
|
||||
if (CRectIsEmpty(rect) || !paths) return nullptr;
|
||||
Rect64 r = CRectToRect(rect);
|
||||
class RectClipLines64 rcl (r);
|
||||
Paths64 pp = ConvertCPaths(paths);
|
||||
Paths64 result = rcl.Execute(pp);
|
||||
return CreateCPaths(result);
|
||||
}
|
||||
|
||||
EXTERN_DLL_EXPORT CPathsD RectClipLinesD(const CRectD& rect,
|
||||
const CPathsD paths, int precision)
|
||||
{
|
||||
if (CRectIsEmpty(rect) || !paths) return nullptr;
|
||||
if (precision < -8 || precision > 8) return nullptr;
|
||||
|
||||
const double scale = std::pow(10, precision);
|
||||
Rect64 r = ScaleRect<int64_t, double>(CRectToRect(rect), scale);
|
||||
class RectClipLines64 rcl(r);
|
||||
Paths64 pp = ConvertCPathsDToPaths64(paths, scale);
|
||||
Paths64 result = rcl.Execute(pp);
|
||||
return CreateCPathsDFromPaths64(result, 1 / scale);
|
||||
}
|
||||
|
||||
} // end Clipper2Lib namespace
|
||||
|
||||
#endif // CLIPPER2_EXPORT_H
|
||||
781
engine/thirdparty/clipper2/include/clipper2/clipper.h
vendored
Normal file
781
engine/thirdparty/clipper2/include/clipper2/clipper.h
vendored
Normal file
|
|
@ -0,0 +1,781 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 18 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : This module provides a simple interface to the Clipper Library *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_H
|
||||
#define CLIPPER_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "clipper2/clipper.core.h"
|
||||
#include "clipper2/clipper.engine.h"
|
||||
#include "clipper2/clipper.offset.h"
|
||||
#include "clipper2/clipper.minkowski.h"
|
||||
#include "clipper2/clipper.rectclip.h"
|
||||
|
||||
namespace Clipper2Lib {
|
||||
|
||||
inline Paths64 BooleanOp(ClipType cliptype, FillRule fillrule,
|
||||
const Paths64& subjects, const Paths64& clips)
|
||||
{
|
||||
Paths64 result;
|
||||
Clipper64 clipper;
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.AddClip(clips);
|
||||
clipper.Execute(cliptype, fillrule, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline void BooleanOp(ClipType cliptype, FillRule fillrule,
|
||||
const Paths64& subjects, const Paths64& clips, PolyTree64& solution)
|
||||
{
|
||||
Paths64 sol_open;
|
||||
Clipper64 clipper;
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.AddClip(clips);
|
||||
clipper.Execute(cliptype, fillrule, solution, sol_open);
|
||||
}
|
||||
|
||||
inline PathsD BooleanOp(ClipType cliptype, FillRule fillrule,
|
||||
const PathsD& subjects, const PathsD& clips, int precision = 2)
|
||||
{
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
PathsD result;
|
||||
if (error_code) return result;
|
||||
ClipperD clipper(precision);
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.AddClip(clips);
|
||||
clipper.Execute(cliptype, fillrule, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline void BooleanOp(ClipType cliptype, FillRule fillrule,
|
||||
const PathsD& subjects, const PathsD& clips,
|
||||
PolyTreeD& polytree, int precision = 2)
|
||||
{
|
||||
polytree.Clear();
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (error_code) return;
|
||||
ClipperD clipper(precision);
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.AddClip(clips);
|
||||
clipper.Execute(cliptype, fillrule, polytree);
|
||||
}
|
||||
|
||||
inline Paths64 Intersect(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
|
||||
{
|
||||
return BooleanOp(ClipType::Intersection, fillrule, subjects, clips);
|
||||
}
|
||||
|
||||
inline PathsD Intersect(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
|
||||
{
|
||||
return BooleanOp(ClipType::Intersection, fillrule, subjects, clips, decimal_prec);
|
||||
}
|
||||
|
||||
inline Paths64 Union(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
|
||||
{
|
||||
return BooleanOp(ClipType::Union, fillrule, subjects, clips);
|
||||
}
|
||||
|
||||
inline PathsD Union(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
|
||||
{
|
||||
return BooleanOp(ClipType::Union, fillrule, subjects, clips, decimal_prec);
|
||||
}
|
||||
|
||||
inline Paths64 Union(const Paths64& subjects, FillRule fillrule)
|
||||
{
|
||||
Paths64 result;
|
||||
Clipper64 clipper;
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.Execute(ClipType::Union, fillrule, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline PathsD Union(const PathsD& subjects, FillRule fillrule, int precision = 2)
|
||||
{
|
||||
PathsD result;
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (error_code) return result;
|
||||
ClipperD clipper(precision);
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.Execute(ClipType::Union, fillrule, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Paths64 Difference(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
|
||||
{
|
||||
return BooleanOp(ClipType::Difference, fillrule, subjects, clips);
|
||||
}
|
||||
|
||||
inline PathsD Difference(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
|
||||
{
|
||||
return BooleanOp(ClipType::Difference, fillrule, subjects, clips, decimal_prec);
|
||||
}
|
||||
|
||||
inline Paths64 Xor(const Paths64& subjects, const Paths64& clips, FillRule fillrule)
|
||||
{
|
||||
return BooleanOp(ClipType::Xor, fillrule, subjects, clips);
|
||||
}
|
||||
|
||||
inline PathsD Xor(const PathsD& subjects, const PathsD& clips, FillRule fillrule, int decimal_prec = 2)
|
||||
{
|
||||
return BooleanOp(ClipType::Xor, fillrule, subjects, clips, decimal_prec);
|
||||
}
|
||||
|
||||
inline Paths64 InflatePaths(const Paths64& paths, double delta,
|
||||
JoinType jt, EndType et, double miter_limit = 2.0,
|
||||
double arc_tolerance = 0.0)
|
||||
{
|
||||
if (!delta) return paths;
|
||||
ClipperOffset clip_offset(miter_limit, arc_tolerance);
|
||||
clip_offset.AddPaths(paths, jt, et);
|
||||
Paths64 solution;
|
||||
clip_offset.Execute(delta, solution);
|
||||
return solution;
|
||||
}
|
||||
|
||||
inline PathsD InflatePaths(const PathsD& paths, double delta,
|
||||
JoinType jt, EndType et, double miter_limit = 2.0,
|
||||
int precision = 2, double arc_tolerance = 0.0)
|
||||
{
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (!delta) return paths;
|
||||
if (error_code) return PathsD();
|
||||
const double scale = std::pow(10, precision);
|
||||
ClipperOffset clip_offset(miter_limit, arc_tolerance);
|
||||
clip_offset.AddPaths(ScalePaths<int64_t,double>(paths, scale, error_code), jt, et);
|
||||
if (error_code) return PathsD();
|
||||
Paths64 solution;
|
||||
clip_offset.Execute(delta * scale, solution);
|
||||
return ScalePaths<double, int64_t>(solution, 1 / scale, error_code);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Path<T> TranslatePath(const Path<T>& path, T dx, T dy)
|
||||
{
|
||||
Path<T> result;
|
||||
result.reserve(path.size());
|
||||
std::transform(path.begin(), path.end(), back_inserter(result),
|
||||
[dx, dy](const auto& pt) { return Point<T>(pt.x + dx, pt.y +dy); });
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Path64 TranslatePath(const Path64& path, int64_t dx, int64_t dy)
|
||||
{
|
||||
return TranslatePath<int64_t>(path, dx, dy);
|
||||
}
|
||||
|
||||
inline PathD TranslatePath(const PathD& path, double dx, double dy)
|
||||
{
|
||||
return TranslatePath<double>(path, dx, dy);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Paths<T> TranslatePaths(const Paths<T>& paths, T dx, T dy)
|
||||
{
|
||||
Paths<T> result;
|
||||
result.reserve(paths.size());
|
||||
std::transform(paths.begin(), paths.end(), back_inserter(result),
|
||||
[dx, dy](const auto& path) { return TranslatePath(path, dx, dy); });
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Paths64 TranslatePaths(const Paths64& paths, int64_t dx, int64_t dy)
|
||||
{
|
||||
return TranslatePaths<int64_t>(paths, dx, dy);
|
||||
}
|
||||
|
||||
inline PathsD TranslatePaths(const PathsD& paths, double dx, double dy)
|
||||
{
|
||||
return TranslatePaths<double>(paths, dx, dy);
|
||||
}
|
||||
|
||||
inline Paths64 RectClip(const Rect64& rect, const Paths64& paths)
|
||||
{
|
||||
if (rect.IsEmpty() || paths.empty()) return Paths64();
|
||||
RectClip64 rc(rect);
|
||||
return rc.Execute(paths);
|
||||
}
|
||||
|
||||
inline Paths64 RectClip(const Rect64& rect, const Path64& path)
|
||||
{
|
||||
if (rect.IsEmpty() || path.empty()) return Paths64();
|
||||
RectClip64 rc(rect);
|
||||
return rc.Execute(Paths64{ path });
|
||||
}
|
||||
|
||||
inline PathsD RectClip(const RectD& rect, const PathsD& paths, int precision = 2)
|
||||
{
|
||||
if (rect.IsEmpty() || paths.empty()) return PathsD();
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (error_code) return PathsD();
|
||||
const double scale = std::pow(10, precision);
|
||||
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
|
||||
RectClip64 rc(r);
|
||||
Paths64 pp = ScalePaths<int64_t, double>(paths, scale, error_code);
|
||||
if (error_code) return PathsD(); // ie: error_code result is lost
|
||||
return ScalePaths<double, int64_t>(
|
||||
rc.Execute(pp), 1 / scale, error_code);
|
||||
}
|
||||
|
||||
inline PathsD RectClip(const RectD& rect, const PathD& path, int precision = 2)
|
||||
{
|
||||
return RectClip(rect, PathsD{ path }, precision);
|
||||
}
|
||||
|
||||
inline Paths64 RectClipLines(const Rect64& rect, const Paths64& lines)
|
||||
{
|
||||
if (rect.IsEmpty() || lines.empty()) return Paths64();
|
||||
RectClipLines64 rcl(rect);
|
||||
return rcl.Execute(lines);
|
||||
}
|
||||
|
||||
inline Paths64 RectClipLines(const Rect64& rect, const Path64& line)
|
||||
{
|
||||
return RectClipLines(rect, Paths64{ line });
|
||||
}
|
||||
|
||||
inline PathsD RectClipLines(const RectD& rect, const PathsD& lines, int precision = 2)
|
||||
{
|
||||
if (rect.IsEmpty() || lines.empty()) return PathsD();
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (error_code) return PathsD();
|
||||
const double scale = std::pow(10, precision);
|
||||
Rect64 r = ScaleRect<int64_t, double>(rect, scale);
|
||||
RectClipLines64 rcl(r);
|
||||
Paths64 p = ScalePaths<int64_t, double>(lines, scale, error_code);
|
||||
if (error_code) return PathsD();
|
||||
p = rcl.Execute(p);
|
||||
return ScalePaths<double, int64_t>(p, 1 / scale, error_code);
|
||||
}
|
||||
|
||||
inline PathsD RectClipLines(const RectD& rect, const PathD& line, int precision = 2)
|
||||
{
|
||||
return RectClipLines(rect, PathsD{ line }, precision);
|
||||
}
|
||||
|
||||
namespace details
|
||||
{
|
||||
|
||||
inline void PolyPathToPaths64(const PolyPath64& polypath, Paths64& paths)
|
||||
{
|
||||
paths.push_back(polypath.Polygon());
|
||||
for (const auto& child : polypath)
|
||||
PolyPathToPaths64(*child, paths);
|
||||
}
|
||||
|
||||
inline void PolyPathToPathsD(const PolyPathD& polypath, PathsD& paths)
|
||||
{
|
||||
paths.push_back(polypath.Polygon());
|
||||
for (const auto& child : polypath)
|
||||
PolyPathToPathsD(*child, paths);
|
||||
}
|
||||
|
||||
inline bool PolyPath64ContainsChildren(const PolyPath64& pp)
|
||||
{
|
||||
for (const auto& child : pp)
|
||||
{
|
||||
// return false if this child isn't fully contained by its parent
|
||||
|
||||
// checking for a single vertex outside is a bit too crude since
|
||||
// it doesn't account for rounding errors. It's better to check
|
||||
// for consecutive vertices found outside the parent's polygon.
|
||||
|
||||
int outsideCnt = 0;
|
||||
for (const Point64& pt : child->Polygon())
|
||||
{
|
||||
PointInPolygonResult result = PointInPolygon(pt, pp.Polygon());
|
||||
if (result == PointInPolygonResult::IsInside) --outsideCnt;
|
||||
else if (result == PointInPolygonResult::IsOutside) ++outsideCnt;
|
||||
if (outsideCnt > 1) return false;
|
||||
else if (outsideCnt < -1) break;
|
||||
}
|
||||
|
||||
// now check any nested children too
|
||||
if (child->Count() > 0 && !PolyPath64ContainsChildren(*child))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void OutlinePolyPath(std::ostream& os,
|
||||
size_t idx, bool isHole, size_t count, const std::string& preamble)
|
||||
{
|
||||
std::string plural = (count == 1) ? "." : "s.";
|
||||
if (isHole)
|
||||
os << preamble << "+- Hole (" << idx << ") contains " << count <<
|
||||
" nested polygon" << plural << std::endl;
|
||||
else
|
||||
os << preamble << "+- Polygon (" << idx << ") contains " << count <<
|
||||
" hole" << plural << std::endl;
|
||||
}
|
||||
|
||||
static void OutlinePolyPath64(std::ostream& os, const PolyPath64& pp,
|
||||
size_t idx, std::string preamble)
|
||||
{
|
||||
OutlinePolyPath(os, idx, pp.IsHole(), pp.Count(), preamble);
|
||||
for (size_t i = 0; i < pp.Count(); ++i)
|
||||
if (pp.Child(i)->Count())
|
||||
details::OutlinePolyPath64(os, *pp.Child(i), i, preamble + " ");
|
||||
}
|
||||
|
||||
static void OutlinePolyPathD(std::ostream& os, const PolyPathD& pp,
|
||||
size_t idx, std::string preamble)
|
||||
{
|
||||
OutlinePolyPath(os, idx, pp.IsHole(), pp.Count(), preamble);
|
||||
for (size_t i = 0; i < pp.Count(); ++i)
|
||||
if (pp.Child(i)->Count())
|
||||
details::OutlinePolyPathD(os, *pp.Child(i), i, preamble + " ");
|
||||
}
|
||||
|
||||
template<typename T, typename U>
|
||||
inline constexpr void MakePathGeneric(const T an_array,
|
||||
size_t array_size, std::vector<U>& result)
|
||||
{
|
||||
result.reserve(array_size / 2);
|
||||
for (size_t i = 0; i < array_size; i +=2)
|
||||
#ifdef USINGZ
|
||||
result.push_back( U{ an_array[i], an_array[i +1], 0} );
|
||||
#else
|
||||
result.push_back( U{ an_array[i], an_array[i + 1]} );
|
||||
#endif
|
||||
}
|
||||
|
||||
} // end details namespace
|
||||
|
||||
inline std::ostream& operator<< (std::ostream& os, const PolyTree64& pp)
|
||||
{
|
||||
std::string plural = (pp.Count() == 1) ? " polygon." : " polygons.";
|
||||
os << std::endl << "Polytree with " << pp.Count() << plural << std::endl;
|
||||
for (size_t i = 0; i < pp.Count(); ++i)
|
||||
if (pp.Child(i)->Count())
|
||||
details::OutlinePolyPath64(os, *pp.Child(i), i, " ");
|
||||
os << std::endl << std::endl;
|
||||
return os;
|
||||
}
|
||||
|
||||
inline std::ostream& operator<< (std::ostream& os, const PolyTreeD& pp)
|
||||
{
|
||||
std::string plural = (pp.Count() == 1) ? " polygon." : " polygons.";
|
||||
os << std::endl << "Polytree with " << pp.Count() << plural << std::endl;
|
||||
for (size_t i = 0; i < pp.Count(); ++i)
|
||||
if (pp.Child(i)->Count())
|
||||
details::OutlinePolyPathD(os, *pp.Child(i), i, " ");
|
||||
os << std::endl << std::endl;
|
||||
if (!pp.Level()) os << std::endl;
|
||||
return os;
|
||||
}
|
||||
|
||||
inline Paths64 PolyTreeToPaths64(const PolyTree64& polytree)
|
||||
{
|
||||
Paths64 result;
|
||||
for (const auto& child : polytree)
|
||||
details::PolyPathToPaths64(*child, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline PathsD PolyTreeToPathsD(const PolyTreeD& polytree)
|
||||
{
|
||||
PathsD result;
|
||||
for (const auto& child : polytree)
|
||||
details::PolyPathToPathsD(*child, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline bool CheckPolytreeFullyContainsChildren(const PolyTree64& polytree)
|
||||
{
|
||||
for (const auto& child : polytree)
|
||||
if (child->Count() > 0 &&
|
||||
!details::PolyPath64ContainsChildren(*child))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T,
|
||||
typename std::enable_if<
|
||||
std::is_integral<T>::value &&
|
||||
!std::is_same<char, T>::value, bool
|
||||
>::type = true>
|
||||
inline Path64 MakePath(const std::vector<T>& list)
|
||||
{
|
||||
const auto size = list.size() - list.size() % 2;
|
||||
if (list.size() != size)
|
||||
DoError(non_pair_error_i); // non-fatal without exception handling
|
||||
Path64 result;
|
||||
details::MakePathGeneric(list, size, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T, std::size_t N,
|
||||
typename std::enable_if<
|
||||
std::is_integral<T>::value &&
|
||||
!std::is_same<char, T>::value, bool
|
||||
>::type = true>
|
||||
inline Path64 MakePath(const T(&list)[N])
|
||||
{
|
||||
// Make the compiler error on unpaired value (i.e. no runtime effects).
|
||||
static_assert(N % 2 == 0, "MakePath requires an even number of arguments");
|
||||
Path64 result;
|
||||
details::MakePathGeneric(list, N, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T,
|
||||
typename std::enable_if<
|
||||
std::is_arithmetic<T>::value &&
|
||||
!std::is_same<char, T>::value, bool
|
||||
>::type = true>
|
||||
inline PathD MakePathD(const std::vector<T>& list)
|
||||
{
|
||||
const auto size = list.size() - list.size() % 2;
|
||||
if (list.size() != size)
|
||||
DoError(non_pair_error_i); // non-fatal without exception handling
|
||||
PathD result;
|
||||
details::MakePathGeneric(list, size, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T, std::size_t N,
|
||||
typename std::enable_if<
|
||||
std::is_arithmetic<T>::value &&
|
||||
!std::is_same<char, T>::value, bool
|
||||
>::type = true>
|
||||
inline PathD MakePathD(const T(&list)[N])
|
||||
{
|
||||
// Make the compiler error on unpaired value (i.e. no runtime effects).
|
||||
static_assert(N % 2 == 0, "MakePath requires an even number of arguments");
|
||||
PathD result;
|
||||
details::MakePathGeneric(list, N, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
#ifdef USINGZ
|
||||
template<typename T2, std::size_t N>
|
||||
inline Path64 MakePathZ(const T2(&list)[N])
|
||||
{
|
||||
static_assert(N % 3 == 0 && std::numeric_limits<T2>::is_integer,
|
||||
"MakePathZ requires integer values in multiples of 3");
|
||||
std::size_t size = N / 3;
|
||||
Path64 result(size);
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
result[i] = Point64(list[i * 3],
|
||||
list[i * 3 + 1], list[i * 3 + 2]);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T2, std::size_t N>
|
||||
inline PathD MakePathZD(const T2(&list)[N])
|
||||
{
|
||||
static_assert(N % 3 == 0,
|
||||
"MakePathZD requires values in multiples of 3");
|
||||
std::size_t size = N / 3;
|
||||
PathD result(size);
|
||||
if constexpr (std::numeric_limits<T2>::is_integer)
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
result[i] = PointD(list[i * 3],
|
||||
list[i * 3 + 1], list[i * 3 + 2]);
|
||||
else
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
result[i] = PointD(list[i * 3], list[i * 3 + 1],
|
||||
static_cast<int64_t>(list[i * 3 + 2]));
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
inline Path64 TrimCollinear(const Path64& p, bool is_open_path = false)
|
||||
{
|
||||
size_t len = p.size();
|
||||
if (len < 3)
|
||||
{
|
||||
if (!is_open_path || len < 2 || p[0] == p[1]) return Path64();
|
||||
else return p;
|
||||
}
|
||||
|
||||
Path64 dst;
|
||||
dst.reserve(len);
|
||||
Path64::const_iterator srcIt = p.cbegin(), prevIt, stop = p.cend() - 1;
|
||||
|
||||
if (!is_open_path)
|
||||
{
|
||||
while (srcIt != stop && !CrossProduct(*stop, *srcIt, *(srcIt + 1)))
|
||||
++srcIt;
|
||||
while (srcIt != stop && !CrossProduct(*(stop - 1), *stop, *srcIt))
|
||||
--stop;
|
||||
if (srcIt == stop) return Path64();
|
||||
}
|
||||
|
||||
prevIt = srcIt++;
|
||||
dst.push_back(*prevIt);
|
||||
for (; srcIt != stop; ++srcIt)
|
||||
{
|
||||
if (CrossProduct(*prevIt, *srcIt, *(srcIt + 1)))
|
||||
{
|
||||
prevIt = srcIt;
|
||||
dst.push_back(*prevIt);
|
||||
}
|
||||
}
|
||||
|
||||
if (is_open_path)
|
||||
dst.push_back(*srcIt);
|
||||
else if (CrossProduct(*prevIt, *stop, dst[0]))
|
||||
dst.push_back(*stop);
|
||||
else
|
||||
{
|
||||
while (dst.size() > 2 &&
|
||||
!CrossProduct(dst[dst.size() - 1], dst[dst.size() - 2], dst[0]))
|
||||
dst.pop_back();
|
||||
if (dst.size() < 3) return Path64();
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
inline PathD TrimCollinear(const PathD& path, int precision, bool is_open_path = false)
|
||||
{
|
||||
int error_code = 0;
|
||||
CheckPrecision(precision, error_code);
|
||||
if (error_code) return PathD();
|
||||
const double scale = std::pow(10, precision);
|
||||
Path64 p = ScalePath<int64_t, double>(path, scale, error_code);
|
||||
if (error_code) return PathD();
|
||||
p = TrimCollinear(p, is_open_path);
|
||||
return ScalePath<double, int64_t>(p, 1/scale, error_code);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double Distance(const Point<T> pt1, const Point<T> pt2)
|
||||
{
|
||||
return std::sqrt(DistanceSqr(pt1, pt2));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double Length(const Path<T>& path, bool is_closed_path = false)
|
||||
{
|
||||
double result = 0.0;
|
||||
if (path.size() < 2) return result;
|
||||
auto it = path.cbegin(), stop = path.end() - 1;
|
||||
for (; it != stop; ++it)
|
||||
result += Distance(*it, *(it + 1));
|
||||
if (is_closed_path)
|
||||
result += Distance(*stop, *path.cbegin());
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline bool NearCollinear(const Point<T>& pt1, const Point<T>& pt2, const Point<T>& pt3, double sin_sqrd_min_angle_rads)
|
||||
{
|
||||
double cp = std::abs(CrossProduct(pt1, pt2, pt3));
|
||||
return (cp * cp) / (DistanceSqr(pt1, pt2) * DistanceSqr(pt2, pt3)) < sin_sqrd_min_angle_rads;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Path<T> Ellipse(const Rect<T>& rect, int steps = 0)
|
||||
{
|
||||
return Ellipse(rect.MidPoint(),
|
||||
static_cast<double>(rect.Width()) *0.5,
|
||||
static_cast<double>(rect.Height()) * 0.5, steps);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Path<T> Ellipse(const Point<T>& center,
|
||||
double radiusX, double radiusY = 0, int steps = 0)
|
||||
{
|
||||
if (radiusX <= 0) return Path<T>();
|
||||
if (radiusY <= 0) radiusY = radiusX;
|
||||
if (steps <= 2)
|
||||
steps = static_cast<int>(PI * sqrt((radiusX + radiusY) / 2));
|
||||
|
||||
double si = std::sin(2 * PI / steps);
|
||||
double co = std::cos(2 * PI / steps);
|
||||
double dx = co, dy = si;
|
||||
Path<T> result;
|
||||
result.reserve(steps);
|
||||
result.push_back(Point<T>(center.x + radiusX, static_cast<double>(center.y)));
|
||||
for (int i = 1; i < steps; ++i)
|
||||
{
|
||||
result.push_back(Point<T>(center.x + radiusX * dx, center.y + radiusY * dy));
|
||||
double x = dx * co - dy * si;
|
||||
dy = dy * co + dx * si;
|
||||
dx = x;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline double PerpendicDistFromLineSqrd(const Point<T>& pt,
|
||||
const Point<T>& line1, const Point<T>& line2)
|
||||
{
|
||||
double a = static_cast<double>(pt.x - line1.x);
|
||||
double b = static_cast<double>(pt.y - line1.y);
|
||||
double c = static_cast<double>(line2.x - line1.x);
|
||||
double d = static_cast<double>(line2.y - line1.y);
|
||||
if (c == 0 && d == 0) return 0;
|
||||
return Sqr(a * d - c * b) / (c * c + d * d);
|
||||
}
|
||||
|
||||
inline size_t GetNext(size_t current, size_t high,
|
||||
const std::vector<bool>& flags)
|
||||
{
|
||||
++current;
|
||||
while (current <= high && flags[current]) ++current;
|
||||
if (current <= high) return current;
|
||||
current = 0;
|
||||
while (flags[current]) ++current;
|
||||
return current;
|
||||
}
|
||||
|
||||
inline size_t GetPrior(size_t current, size_t high,
|
||||
const std::vector<bool>& flags)
|
||||
{
|
||||
if (current == 0) current = high;
|
||||
else --current;
|
||||
while (current > 0 && flags[current]) --current;
|
||||
if (!flags[current]) return current;
|
||||
current = high;
|
||||
while (flags[current]) --current;
|
||||
return current;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Path<T> SimplifyPath(const Path<T> &path,
|
||||
double epsilon, bool isClosedPath = true)
|
||||
{
|
||||
const size_t len = path.size(), high = len -1;
|
||||
const double epsSqr = Sqr(epsilon);
|
||||
if (len < 4) return Path<T>(path);
|
||||
|
||||
std::vector<bool> flags(len);
|
||||
std::vector<double> distSqr(len);
|
||||
size_t prior = high, curr = 0, start, next, prior2;
|
||||
if (isClosedPath)
|
||||
{
|
||||
distSqr[0] = PerpendicDistFromLineSqrd(path[0], path[high], path[1]);
|
||||
distSqr[high] = PerpendicDistFromLineSqrd(path[high], path[0], path[high - 1]);
|
||||
}
|
||||
else
|
||||
{
|
||||
distSqr[0] = MAX_DBL;
|
||||
distSqr[high] = MAX_DBL;
|
||||
}
|
||||
for (size_t i = 1; i < high; ++i)
|
||||
distSqr[i] = PerpendicDistFromLineSqrd(path[i], path[i - 1], path[i + 1]);
|
||||
|
||||
for (;;)
|
||||
{
|
||||
if (distSqr[curr] > epsSqr)
|
||||
{
|
||||
start = curr;
|
||||
do
|
||||
{
|
||||
curr = GetNext(curr, high, flags);
|
||||
} while (curr != start && distSqr[curr] > epsSqr);
|
||||
if (curr == start) break;
|
||||
}
|
||||
|
||||
prior = GetPrior(curr, high, flags);
|
||||
next = GetNext(curr, high, flags);
|
||||
if (next == prior) break;
|
||||
|
||||
// flag for removal the smaller of adjacent 'distances'
|
||||
if (distSqr[next] < distSqr[curr])
|
||||
{
|
||||
prior2 = prior;
|
||||
prior = curr;
|
||||
curr = next;
|
||||
next = GetNext(next, high, flags);
|
||||
}
|
||||
else
|
||||
prior2 = GetPrior(prior, high, flags);
|
||||
|
||||
flags[curr] = true;
|
||||
curr = next;
|
||||
next = GetNext(next, high, flags);
|
||||
|
||||
if (isClosedPath || ((curr != high) && (curr != 0)))
|
||||
distSqr[curr] = PerpendicDistFromLineSqrd(path[curr], path[prior], path[next]);
|
||||
if (isClosedPath || ((prior != 0) && (prior != high)))
|
||||
distSqr[prior] = PerpendicDistFromLineSqrd(path[prior], path[prior2], path[curr]);
|
||||
}
|
||||
Path<T> result;
|
||||
result.reserve(len);
|
||||
for (typename Path<T>::size_type i = 0; i < len; ++i)
|
||||
if (!flags[i]) result.push_back(path[i]);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Paths<T> SimplifyPaths(const Paths<T> &paths,
|
||||
double epsilon, bool isClosedPath = true)
|
||||
{
|
||||
Paths<T> result;
|
||||
result.reserve(paths.size());
|
||||
for (const auto& path : paths)
|
||||
result.push_back(SimplifyPath(path, epsilon, isClosedPath));
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void RDP(const Path<T> path, std::size_t begin,
|
||||
std::size_t end, double epsSqrd, std::vector<bool>& flags)
|
||||
{
|
||||
typename Path<T>::size_type idx = 0;
|
||||
double max_d = 0;
|
||||
while (end > begin && path[begin] == path[end]) flags[end--] = false;
|
||||
for (typename Path<T>::size_type i = begin + 1; i < end; ++i)
|
||||
{
|
||||
// PerpendicDistFromLineSqrd - avoids expensive Sqrt()
|
||||
double d = PerpendicDistFromLineSqrd(path[i], path[begin], path[end]);
|
||||
if (d <= max_d) continue;
|
||||
max_d = d;
|
||||
idx = i;
|
||||
}
|
||||
if (max_d <= epsSqrd) return;
|
||||
flags[idx] = true;
|
||||
if (idx > begin + 1) RDP(path, begin, idx, epsSqrd, flags);
|
||||
if (idx < end - 1) RDP(path, idx, end, epsSqrd, flags);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Path<T> RamerDouglasPeucker(const Path<T>& path, double epsilon)
|
||||
{
|
||||
const typename Path<T>::size_type len = path.size();
|
||||
if (len < 5) return Path<T>(path);
|
||||
std::vector<bool> flags(len);
|
||||
flags[0] = true;
|
||||
flags[len - 1] = true;
|
||||
RDP(path, 0, len - 1, Sqr(epsilon), flags);
|
||||
Path<T> result;
|
||||
result.reserve(len);
|
||||
for (typename Path<T>::size_type i = 0; i < len; ++i)
|
||||
if (flags[i])
|
||||
result.push_back(path[i]);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline Paths<T> RamerDouglasPeucker(const Paths<T>& paths, double epsilon)
|
||||
{
|
||||
Paths<T> result;
|
||||
result.reserve(paths.size());
|
||||
std::transform(paths.begin(), paths.end(), back_inserter(result),
|
||||
[epsilon](const auto& path)
|
||||
{ return RamerDouglasPeucker<T>(path, epsilon); });
|
||||
return result;
|
||||
}
|
||||
|
||||
} // end Clipper2Lib namespace
|
||||
|
||||
#endif // CLIPPER_H
|
||||
120
engine/thirdparty/clipper2/include/clipper2/clipper.minkowski.h
vendored
Normal file
120
engine/thirdparty/clipper2/include/clipper2/clipper.minkowski.h
vendored
Normal file
|
|
@ -0,0 +1,120 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 1 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : Minkowski Sum and Difference *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_MINKOWSKI_H
|
||||
#define CLIPPER_MINKOWSKI_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "clipper2/clipper.core.h"
|
||||
|
||||
namespace Clipper2Lib
|
||||
{
|
||||
|
||||
namespace detail
|
||||
{
|
||||
inline Paths64 Minkowski(const Path64& pattern, const Path64& path, bool isSum, bool isClosed)
|
||||
{
|
||||
size_t delta = isClosed ? 0 : 1;
|
||||
size_t patLen = pattern.size(), pathLen = path.size();
|
||||
if (patLen == 0 || pathLen == 0) return Paths64();
|
||||
Paths64 tmp;
|
||||
tmp.reserve(pathLen);
|
||||
|
||||
if (isSum)
|
||||
{
|
||||
for (const Point64& p : path)
|
||||
{
|
||||
Path64 path2(pattern.size());
|
||||
std::transform(pattern.cbegin(), pattern.cend(),
|
||||
path2.begin(), [p](const Point64& pt2) {return p + pt2; });
|
||||
tmp.push_back(path2);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (const Point64& p : path)
|
||||
{
|
||||
Path64 path2(pattern.size());
|
||||
std::transform(pattern.cbegin(), pattern.cend(),
|
||||
path2.begin(), [p](const Point64& pt2) {return p - pt2; });
|
||||
tmp.push_back(path2);
|
||||
}
|
||||
}
|
||||
|
||||
Paths64 result;
|
||||
result.reserve((pathLen - delta) * patLen);
|
||||
size_t g = isClosed ? pathLen - 1 : 0;
|
||||
for (size_t h = patLen - 1, i = delta; i < pathLen; ++i)
|
||||
{
|
||||
for (size_t j = 0; j < patLen; j++)
|
||||
{
|
||||
Path64 quad;
|
||||
quad.reserve(4);
|
||||
{
|
||||
quad.push_back(tmp[g][h]);
|
||||
quad.push_back(tmp[i][h]);
|
||||
quad.push_back(tmp[i][j]);
|
||||
quad.push_back(tmp[g][j]);
|
||||
};
|
||||
if (!IsPositive(quad))
|
||||
std::reverse(quad.begin(), quad.end());
|
||||
result.push_back(quad);
|
||||
h = j;
|
||||
}
|
||||
g = i;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Paths64 Union(const Paths64& subjects, FillRule fillrule)
|
||||
{
|
||||
Paths64 result;
|
||||
Clipper64 clipper;
|
||||
clipper.AddSubject(subjects);
|
||||
clipper.Execute(ClipType::Union, fillrule, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
inline Paths64 MinkowskiSum(const Path64& pattern, const Path64& path, bool isClosed)
|
||||
{
|
||||
return detail::Union(detail::Minkowski(pattern, path, true, isClosed), FillRule::NonZero);
|
||||
}
|
||||
|
||||
inline PathsD MinkowskiSum(const PathD& pattern, const PathD& path, bool isClosed, int decimalPlaces = 2)
|
||||
{
|
||||
int error_code = 0;
|
||||
double scale = pow(10, decimalPlaces);
|
||||
Path64 pat64 = ScalePath<int64_t, double>(pattern, scale, error_code);
|
||||
Path64 path64 = ScalePath<int64_t, double>(path, scale, error_code);
|
||||
Paths64 tmp = detail::Union(detail::Minkowski(pat64, path64, true, isClosed), FillRule::NonZero);
|
||||
return ScalePaths<double, int64_t>(tmp, 1 / scale, error_code);
|
||||
}
|
||||
|
||||
inline Paths64 MinkowskiDiff(const Path64& pattern, const Path64& path, bool isClosed)
|
||||
{
|
||||
return detail::Union(detail::Minkowski(pattern, path, false, isClosed), FillRule::NonZero);
|
||||
}
|
||||
|
||||
inline PathsD MinkowskiDiff(const PathD& pattern, const PathD& path, bool isClosed, int decimalPlaces = 2)
|
||||
{
|
||||
int error_code = 0;
|
||||
double scale = pow(10, decimalPlaces);
|
||||
Path64 pat64 = ScalePath<int64_t, double>(pattern, scale, error_code);
|
||||
Path64 path64 = ScalePath<int64_t, double>(path, scale, error_code);
|
||||
Paths64 tmp = detail::Union(detail::Minkowski(pat64, path64, false, isClosed), FillRule::NonZero);
|
||||
return ScalePaths<double, int64_t>(tmp, 1 / scale, error_code);
|
||||
}
|
||||
|
||||
} // Clipper2Lib namespace
|
||||
|
||||
#endif // CLIPPER_MINKOWSKI_H
|
||||
124
engine/thirdparty/clipper2/include/clipper2/clipper.offset.h
vendored
Normal file
124
engine/thirdparty/clipper2/include/clipper2/clipper.offset.h
vendored
Normal file
|
|
@ -0,0 +1,124 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 19 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : Path Offset (Inflate/Shrink) *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_OFFSET_H_
|
||||
#define CLIPPER_OFFSET_H_
|
||||
|
||||
#include "clipper.core.h"
|
||||
#include "clipper.engine.h"
|
||||
|
||||
namespace Clipper2Lib {
|
||||
|
||||
enum class JoinType { Square, Bevel, Round, Miter };
|
||||
//Square : Joins are 'squared' at exactly the offset distance (more complex code)
|
||||
//Bevel : Similar to Square, but the offset distance varies with angle (simple code & faster)
|
||||
|
||||
enum class EndType {Polygon, Joined, Butt, Square, Round};
|
||||
//Butt : offsets both sides of a path, with square blunt ends
|
||||
//Square : offsets both sides of a path, with square extended ends
|
||||
//Round : offsets both sides of a path, with round extended ends
|
||||
//Joined : offsets both sides of a path, with joined ends
|
||||
//Polygon: offsets only one side of a closed path
|
||||
|
||||
typedef std::function<double(const Path64& path, const PathD& path_normals, size_t curr_idx, size_t prev_idx)> DeltaCallback64;
|
||||
|
||||
class ClipperOffset {
|
||||
private:
|
||||
|
||||
class Group {
|
||||
public:
|
||||
Paths64 paths_in;
|
||||
std::vector<bool> is_hole_list;
|
||||
std::vector<Rect64> bounds_list;
|
||||
int lowest_path_idx = -1;
|
||||
bool is_reversed = false;
|
||||
JoinType join_type;
|
||||
EndType end_type;
|
||||
Group(const Paths64& _paths, JoinType _join_type, EndType _end_type);
|
||||
};
|
||||
|
||||
int error_code_ = 0;
|
||||
double delta_ = 0.0;
|
||||
double group_delta_ = 0.0;
|
||||
double temp_lim_ = 0.0;
|
||||
double steps_per_rad_ = 0.0;
|
||||
double step_sin_ = 0.0;
|
||||
double step_cos_ = 0.0;
|
||||
PathD norms;
|
||||
Path64 path_out;
|
||||
Paths64 solution;
|
||||
std::vector<Group> groups_;
|
||||
JoinType join_type_ = JoinType::Bevel;
|
||||
EndType end_type_ = EndType::Polygon;
|
||||
|
||||
double miter_limit_ = 0.0;
|
||||
double arc_tolerance_ = 0.0;
|
||||
bool preserve_collinear_ = false;
|
||||
bool reverse_solution_ = false;
|
||||
|
||||
#ifdef USINGZ
|
||||
ZCallback64 zCallback64_ = nullptr;
|
||||
#endif
|
||||
DeltaCallback64 deltaCallback64_ = nullptr;
|
||||
|
||||
size_t CalcSolutionCapacity();
|
||||
bool CheckReverseOrientation();
|
||||
void DoBevel(const Path64& path, size_t j, size_t k);
|
||||
void DoSquare(const Path64& path, size_t j, size_t k);
|
||||
void DoMiter(const Path64& path, size_t j, size_t k, double cos_a);
|
||||
void DoRound(const Path64& path, size_t j, size_t k, double angle);
|
||||
void BuildNormals(const Path64& path);
|
||||
void OffsetPolygon(Group& group, const Path64& path);
|
||||
void OffsetOpenJoined(Group& group, const Path64& path);
|
||||
void OffsetOpenPath(Group& group, const Path64& path);
|
||||
void OffsetPoint(Group& group, const Path64& path, size_t j, size_t k);
|
||||
void DoGroupOffset(Group &group);
|
||||
void ExecuteInternal(double delta);
|
||||
public:
|
||||
explicit ClipperOffset(double miter_limit = 2.0,
|
||||
double arc_tolerance = 0.0,
|
||||
bool preserve_collinear = false,
|
||||
bool reverse_solution = false) :
|
||||
miter_limit_(miter_limit), arc_tolerance_(arc_tolerance),
|
||||
preserve_collinear_(preserve_collinear),
|
||||
reverse_solution_(reverse_solution) { };
|
||||
|
||||
~ClipperOffset() { Clear(); };
|
||||
|
||||
int ErrorCode() { return error_code_; };
|
||||
void AddPath(const Path64& path, JoinType jt_, EndType et_);
|
||||
void AddPaths(const Paths64& paths, JoinType jt_, EndType et_);
|
||||
void Clear() { groups_.clear(); norms.clear(); };
|
||||
|
||||
void Execute(double delta, Paths64& paths);
|
||||
void Execute(double delta, PolyTree64& polytree);
|
||||
void Execute(DeltaCallback64 delta_cb, Paths64& paths);
|
||||
|
||||
double MiterLimit() const { return miter_limit_; }
|
||||
void MiterLimit(double miter_limit) { miter_limit_ = miter_limit; }
|
||||
|
||||
//ArcTolerance: needed for rounded offsets (See offset_triginometry2.svg)
|
||||
double ArcTolerance() const { return arc_tolerance_; }
|
||||
void ArcTolerance(double arc_tolerance) { arc_tolerance_ = arc_tolerance; }
|
||||
|
||||
bool PreserveCollinear() const { return preserve_collinear_; }
|
||||
void PreserveCollinear(bool preserve_collinear){preserve_collinear_ = preserve_collinear;}
|
||||
|
||||
bool ReverseSolution() const { return reverse_solution_; }
|
||||
void ReverseSolution(bool reverse_solution) {reverse_solution_ = reverse_solution;}
|
||||
|
||||
#ifdef USINGZ
|
||||
void SetZCallback(ZCallback64 cb) { zCallback64_ = cb; }
|
||||
#endif
|
||||
void SetDeltaCallback(DeltaCallback64 cb) { deltaCallback64_ = cb; }
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif /* CLIPPER_OFFSET_H_ */
|
||||
81
engine/thirdparty/clipper2/include/clipper2/clipper.rectclip.h
vendored
Normal file
81
engine/thirdparty/clipper2/include/clipper2/clipper.rectclip.h
vendored
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 1 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : FAST rectangular clipping *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef CLIPPER_RECTCLIP_H
|
||||
#define CLIPPER_RECTCLIP_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
#include "clipper2/clipper.core.h"
|
||||
|
||||
namespace Clipper2Lib
|
||||
{
|
||||
|
||||
enum class Location { Left, Top, Right, Bottom, Inside };
|
||||
|
||||
class OutPt2;
|
||||
typedef std::vector<OutPt2*> OutPt2List;
|
||||
|
||||
class OutPt2 {
|
||||
public:
|
||||
Point64 pt;
|
||||
size_t owner_idx;
|
||||
OutPt2List* edge;
|
||||
OutPt2* next;
|
||||
OutPt2* prev;
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RectClip64
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
class RectClip64 {
|
||||
private:
|
||||
void ExecuteInternal(const Path64& path);
|
||||
Path64 GetPath(OutPt2*& op);
|
||||
protected:
|
||||
const Rect64 rect_;
|
||||
const Path64 rect_as_path_;
|
||||
const Point64 rect_mp_;
|
||||
Rect64 path_bounds_;
|
||||
std::deque<OutPt2> op_container_;
|
||||
OutPt2List results_; // each path can be broken into multiples
|
||||
OutPt2List edges_[8]; // clockwise and counter-clockwise
|
||||
std::vector<Location> start_locs_;
|
||||
void CheckEdges();
|
||||
void TidyEdges(int idx, OutPt2List& cw, OutPt2List& ccw);
|
||||
void GetNextLocation(const Path64& path,
|
||||
Location& loc, int& i, int highI);
|
||||
OutPt2* Add(Point64 pt, bool start_new = false);
|
||||
void AddCorner(Location prev, Location curr);
|
||||
void AddCorner(Location& loc, bool isClockwise);
|
||||
public:
|
||||
explicit RectClip64(const Rect64& rect) :
|
||||
rect_(rect),
|
||||
rect_as_path_(rect.AsPath()),
|
||||
rect_mp_(rect.MidPoint()) {}
|
||||
Paths64 Execute(const Paths64& paths);
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// RectClipLines64
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
class RectClipLines64 : public RectClip64 {
|
||||
private:
|
||||
void ExecuteInternal(const Path64& path);
|
||||
Path64 GetPath(OutPt2*& op);
|
||||
public:
|
||||
explicit RectClipLines64(const Rect64& rect) : RectClip64(rect) {};
|
||||
Paths64 Execute(const Paths64& paths);
|
||||
};
|
||||
|
||||
} // Clipper2Lib namespace
|
||||
#endif // CLIPPER_RECTCLIP_H
|
||||
6
engine/thirdparty/clipper2/include/clipper2/clipper.version.h
vendored
Normal file
6
engine/thirdparty/clipper2/include/clipper2/clipper.version.h
vendored
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
#ifndef CLIPPER_VERSION_H
|
||||
#define CLIPPER_VERSION_H
|
||||
|
||||
constexpr auto CLIPPER2_VERSION = "1.3.0";
|
||||
|
||||
#endif // CLIPPER_VERSION_H
|
||||
38
engine/thirdparty/clipper2/patches/clipper2-exceptions.patch
vendored
Normal file
38
engine/thirdparty/clipper2/patches/clipper2-exceptions.patch
vendored
Normal file
|
|
@ -0,0 +1,38 @@
|
|||
diff --git a/thirdparty/clipper2/include/clipper2/clipper.core.h b/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
index b3dddeeaa2..a77cdad5f4 100644
|
||||
--- a/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
+++ b/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
@@ -21,6 +21,8 @@
|
||||
#include <numeric>
|
||||
#include "clipper2/clipper.version.h"
|
||||
|
||||
+#define CLIPPER2_THROW(exception) std::abort()
|
||||
+
|
||||
namespace Clipper2Lib
|
||||
{
|
||||
|
||||
@@ -78,18 +80,18 @@ namespace Clipper2Lib
|
||||
switch (error_code)
|
||||
{
|
||||
case precision_error_i:
|
||||
- throw Clipper2Exception(precision_error);
|
||||
+ CLIPPER2_THROW(Clipper2Exception(precision_error));
|
||||
case scale_error_i:
|
||||
- throw Clipper2Exception(scale_error);
|
||||
+ CLIPPER2_THROW(Clipper2Exception(scale_error));
|
||||
case non_pair_error_i:
|
||||
- throw Clipper2Exception(non_pair_error);
|
||||
+ CLIPPER2_THROW(Clipper2Exception(non_pair_error));
|
||||
case undefined_error_i:
|
||||
- throw Clipper2Exception(undefined_error);
|
||||
+ CLIPPER2_THROW(Clipper2Exception(undefined_error));
|
||||
case range_error_i:
|
||||
- throw Clipper2Exception(range_error);
|
||||
+ CLIPPER2_THROW(Clipper2Exception(range_error));
|
||||
}
|
||||
#else
|
||||
- ++error_code; // only to stop compiler warning
|
||||
+ if(error_code) {}; // only to stop compiler 'parameter not used' warning
|
||||
#endif
|
||||
}
|
||||
|
||||
22
engine/thirdparty/clipper2/patches/gcc14-warning.patch
vendored
Normal file
22
engine/thirdparty/clipper2/patches/gcc14-warning.patch
vendored
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
diff --git a/thirdparty/clipper2/include/clipper2/clipper.core.h b/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
index a77cdad5f4..0de7c3720e 100644
|
||||
--- a/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
+++ b/thirdparty/clipper2/include/clipper2/clipper.core.h
|
||||
@@ -138,7 +138,7 @@ namespace Clipper2Lib
|
||||
}
|
||||
|
||||
template <typename T2>
|
||||
- explicit Point<T>(const Point<T2>& p)
|
||||
+ explicit Point(const Point<T2>& p)
|
||||
{
|
||||
Init(p.x, p.y, p.z);
|
||||
}
|
||||
@@ -180,7 +180,7 @@ namespace Clipper2Lib
|
||||
Point(const T2 x_, const T2 y_) { Init(x_, y_); }
|
||||
|
||||
template <typename T2>
|
||||
- explicit Point<T>(const Point<T2>& p) { Init(p.x, p.y); }
|
||||
+ explicit Point(const Point<T2>& p) { Init(p.x, p.y); }
|
||||
|
||||
Point operator * (const double scale) const
|
||||
{
|
||||
3098
engine/thirdparty/clipper2/src/clipper.engine.cpp
vendored
Normal file
3098
engine/thirdparty/clipper2/src/clipper.engine.cpp
vendored
Normal file
File diff suppressed because it is too large
Load diff
723
engine/thirdparty/clipper2/src/clipper.offset.cpp
vendored
Normal file
723
engine/thirdparty/clipper2/src/clipper.offset.cpp
vendored
Normal file
|
|
@ -0,0 +1,723 @@
|
|||
/*******************************************************************************
|
||||
* Author : Angus Johnson *
|
||||
* Date : 28 November 2023 *
|
||||
* Website : http://www.angusj.com *
|
||||
* Copyright : Angus Johnson 2010-2023 *
|
||||
* Purpose : Path Offset (Inflate/Shrink) *
|
||||
* License : http://www.boost.org/LICENSE_1_0.txt *
|
||||
*******************************************************************************/
|
||||
|
||||
#include <cmath>
|
||||
#include "clipper2/clipper.h"
|
||||
#include "clipper2/clipper.offset.h"
|
||||
|
||||
namespace Clipper2Lib {
|
||||
|
||||
const double default_arc_tolerance = 0.25;
|
||||
const double floating_point_tolerance = 1e-12;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Miscellaneous methods
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
inline bool ToggleBoolIf(bool val, bool condition)
|
||||
{
|
||||
return condition ? !val : val;
|
||||
}
|
||||
|
||||
void GetMultiBounds(const Paths64& paths, std::vector<Rect64>& recList)
|
||||
{
|
||||
recList.reserve(paths.size());
|
||||
for (const Path64& path : paths)
|
||||
{
|
||||
if (path.size() < 1)
|
||||
{
|
||||
recList.push_back(InvalidRect64);
|
||||
continue;
|
||||
}
|
||||
int64_t x = path[0].x, y = path[0].y;
|
||||
Rect64 r = Rect64(x, y, x, y);
|
||||
for (const Point64& pt : path)
|
||||
{
|
||||
if (pt.y > r.bottom) r.bottom = pt.y;
|
||||
else if (pt.y < r.top) r.top = pt.y;
|
||||
if (pt.x > r.right) r.right = pt.x;
|
||||
else if (pt.x < r.left) r.left = pt.x;
|
||||
}
|
||||
recList.push_back(r);
|
||||
}
|
||||
}
|
||||
|
||||
bool ValidateBounds(std::vector<Rect64>& recList, double delta)
|
||||
{
|
||||
int64_t int_delta = static_cast<int64_t>(delta);
|
||||
int64_t big = MAX_COORD - int_delta;
|
||||
int64_t small = MIN_COORD + int_delta;
|
||||
for (const Rect64& r : recList)
|
||||
{
|
||||
if (!r.IsValid()) continue; // ignore invalid paths
|
||||
else if (r.left < small || r.right > big ||
|
||||
r.top < small || r.bottom > big) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
int GetLowestClosedPathIdx(std::vector<Rect64>& boundsList)
|
||||
{
|
||||
int i = -1, result = -1;
|
||||
Point64 botPt = Point64(INT64_MAX, INT64_MIN);
|
||||
for (const Rect64& r : boundsList)
|
||||
{
|
||||
++i;
|
||||
if (!r.IsValid()) continue; // ignore invalid paths
|
||||
else if (r.bottom > botPt.y || (r.bottom == botPt.y && r.left < botPt.x))
|
||||
{
|
||||
botPt = Point64(r.left, r.bottom);
|
||||
result = static_cast<int>(i);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
PointD GetUnitNormal(const Point64& pt1, const Point64& pt2)
|
||||
{
|
||||
double dx, dy, inverse_hypot;
|
||||
if (pt1 == pt2) return PointD(0.0, 0.0);
|
||||
dx = static_cast<double>(pt2.x - pt1.x);
|
||||
dy = static_cast<double>(pt2.y - pt1.y);
|
||||
inverse_hypot = 1.0 / hypot(dx, dy);
|
||||
dx *= inverse_hypot;
|
||||
dy *= inverse_hypot;
|
||||
return PointD(dy, -dx);
|
||||
}
|
||||
|
||||
inline bool AlmostZero(double value, double epsilon = 0.001)
|
||||
{
|
||||
return std::fabs(value) < epsilon;
|
||||
}
|
||||
|
||||
inline double Hypot(double x, double y)
|
||||
{
|
||||
//see https://stackoverflow.com/a/32436148/359538
|
||||
return std::sqrt(x * x + y * y);
|
||||
}
|
||||
|
||||
inline PointD NormalizeVector(const PointD& vec)
|
||||
{
|
||||
double h = Hypot(vec.x, vec.y);
|
||||
if (AlmostZero(h)) return PointD(0,0);
|
||||
double inverseHypot = 1 / h;
|
||||
return PointD(vec.x * inverseHypot, vec.y * inverseHypot);
|
||||
}
|
||||
|
||||
inline PointD GetAvgUnitVector(const PointD& vec1, const PointD& vec2)
|
||||
{
|
||||
return NormalizeVector(PointD(vec1.x + vec2.x, vec1.y + vec2.y));
|
||||
}
|
||||
|
||||
inline bool IsClosedPath(EndType et)
|
||||
{
|
||||
return et == EndType::Polygon || et == EndType::Joined;
|
||||
}
|
||||
|
||||
inline Point64 GetPerpendic(const Point64& pt, const PointD& norm, double delta)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
return Point64(pt.x + norm.x * delta, pt.y + norm.y * delta, pt.z);
|
||||
#else
|
||||
return Point64(pt.x + norm.x * delta, pt.y + norm.y * delta);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline PointD GetPerpendicD(const Point64& pt, const PointD& norm, double delta)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
return PointD(pt.x + norm.x * delta, pt.y + norm.y * delta, pt.z);
|
||||
#else
|
||||
return PointD(pt.x + norm.x * delta, pt.y + norm.y * delta);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void NegatePath(PathD& path)
|
||||
{
|
||||
for (PointD& pt : path)
|
||||
{
|
||||
pt.x = -pt.x;
|
||||
pt.y = -pt.y;
|
||||
#ifdef USINGZ
|
||||
pt.z = pt.z;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// ClipperOffset::Group methods
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
ClipperOffset::Group::Group(const Paths64& _paths, JoinType _join_type, EndType _end_type):
|
||||
paths_in(_paths), join_type(_join_type), end_type(_end_type)
|
||||
{
|
||||
bool is_joined =
|
||||
(end_type == EndType::Polygon) ||
|
||||
(end_type == EndType::Joined);
|
||||
for (Path64& p: paths_in)
|
||||
StripDuplicates(p, is_joined);
|
||||
|
||||
// get bounds of each path --> bounds_list
|
||||
GetMultiBounds(paths_in, bounds_list);
|
||||
|
||||
if (end_type == EndType::Polygon)
|
||||
{
|
||||
is_hole_list.reserve(paths_in.size());
|
||||
for (const Path64& path : paths_in)
|
||||
is_hole_list.push_back(Area(path) < 0);
|
||||
lowest_path_idx = GetLowestClosedPathIdx(bounds_list);
|
||||
// the lowermost path must be an outer path, so if its orientation is negative,
|
||||
// then flag the whole group is 'reversed' (will negate delta etc.)
|
||||
// as this is much more efficient than reversing every path.
|
||||
is_reversed = (lowest_path_idx >= 0) && is_hole_list[lowest_path_idx];
|
||||
if (is_reversed) is_hole_list.flip();
|
||||
}
|
||||
else
|
||||
{
|
||||
lowest_path_idx = -1;
|
||||
is_reversed = false;
|
||||
is_hole_list.resize(paths_in.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// ClipperOffset methods
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
void ClipperOffset::AddPath(const Path64& path, JoinType jt_, EndType et_)
|
||||
{
|
||||
Paths64 paths;
|
||||
paths.push_back(path);
|
||||
AddPaths(paths, jt_, et_);
|
||||
}
|
||||
|
||||
void ClipperOffset::AddPaths(const Paths64 &paths, JoinType jt_, EndType et_)
|
||||
{
|
||||
if (paths.size() == 0) return;
|
||||
groups_.push_back(Group(paths, jt_, et_));
|
||||
}
|
||||
|
||||
void ClipperOffset::BuildNormals(const Path64& path)
|
||||
{
|
||||
norms.clear();
|
||||
norms.reserve(path.size());
|
||||
if (path.size() == 0) return;
|
||||
Path64::const_iterator path_iter, path_stop_iter = --path.cend();
|
||||
for (path_iter = path.cbegin(); path_iter != path_stop_iter; ++path_iter)
|
||||
norms.push_back(GetUnitNormal(*path_iter,*(path_iter +1)));
|
||||
norms.push_back(GetUnitNormal(*path_stop_iter, *(path.cbegin())));
|
||||
}
|
||||
|
||||
inline PointD TranslatePoint(const PointD& pt, double dx, double dy)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
return PointD(pt.x + dx, pt.y + dy, pt.z);
|
||||
#else
|
||||
return PointD(pt.x + dx, pt.y + dy);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline PointD ReflectPoint(const PointD& pt, const PointD& pivot)
|
||||
{
|
||||
#ifdef USINGZ
|
||||
return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y), pt.z);
|
||||
#else
|
||||
return PointD(pivot.x + (pivot.x - pt.x), pivot.y + (pivot.y - pt.y));
|
||||
#endif
|
||||
}
|
||||
|
||||
PointD IntersectPoint(const PointD& pt1a, const PointD& pt1b,
|
||||
const PointD& pt2a, const PointD& pt2b)
|
||||
{
|
||||
if (pt1a.x == pt1b.x) //vertical
|
||||
{
|
||||
if (pt2a.x == pt2b.x) return PointD(0, 0);
|
||||
|
||||
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
|
||||
double b2 = pt2a.y - m2 * pt2a.x;
|
||||
return PointD(pt1a.x, m2 * pt1a.x + b2);
|
||||
}
|
||||
else if (pt2a.x == pt2b.x) //vertical
|
||||
{
|
||||
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
|
||||
double b1 = pt1a.y - m1 * pt1a.x;
|
||||
return PointD(pt2a.x, m1 * pt2a.x + b1);
|
||||
}
|
||||
else
|
||||
{
|
||||
double m1 = (pt1b.y - pt1a.y) / (pt1b.x - pt1a.x);
|
||||
double b1 = pt1a.y - m1 * pt1a.x;
|
||||
double m2 = (pt2b.y - pt2a.y) / (pt2b.x - pt2a.x);
|
||||
double b2 = pt2a.y - m2 * pt2a.x;
|
||||
if (m1 == m2) return PointD(0, 0);
|
||||
double x = (b2 - b1) / (m1 - m2);
|
||||
return PointD(x, m1 * x + b1);
|
||||
}
|
||||
}
|
||||
|
||||
void ClipperOffset::DoBevel(const Path64& path, size_t j, size_t k)
|
||||
{
|
||||
PointD pt1, pt2;
|
||||
if (j == k)
|
||||
{
|
||||
double abs_delta = std::abs(group_delta_);
|
||||
pt1 = PointD(path[j].x - abs_delta * norms[j].x, path[j].y - abs_delta * norms[j].y);
|
||||
pt2 = PointD(path[j].x + abs_delta * norms[j].x, path[j].y + abs_delta * norms[j].y);
|
||||
}
|
||||
else
|
||||
{
|
||||
pt1 = PointD(path[j].x + group_delta_ * norms[k].x, path[j].y + group_delta_ * norms[k].y);
|
||||
pt2 = PointD(path[j].x + group_delta_ * norms[j].x, path[j].y + group_delta_ * norms[j].y);
|
||||
}
|
||||
path_out.push_back(Point64(pt1));
|
||||
path_out.push_back(Point64(pt2));
|
||||
}
|
||||
|
||||
void ClipperOffset::DoSquare(const Path64& path, size_t j, size_t k)
|
||||
{
|
||||
PointD vec;
|
||||
if (j == k)
|
||||
vec = PointD(norms[j].y, -norms[j].x);
|
||||
else
|
||||
vec = GetAvgUnitVector(
|
||||
PointD(-norms[k].y, norms[k].x),
|
||||
PointD(norms[j].y, -norms[j].x));
|
||||
|
||||
double abs_delta = std::abs(group_delta_);
|
||||
|
||||
// now offset the original vertex delta units along unit vector
|
||||
PointD ptQ = PointD(path[j]);
|
||||
ptQ = TranslatePoint(ptQ, abs_delta * vec.x, abs_delta * vec.y);
|
||||
// get perpendicular vertices
|
||||
PointD pt1 = TranslatePoint(ptQ, group_delta_ * vec.y, group_delta_ * -vec.x);
|
||||
PointD pt2 = TranslatePoint(ptQ, group_delta_ * -vec.y, group_delta_ * vec.x);
|
||||
// get 2 vertices along one edge offset
|
||||
PointD pt3 = GetPerpendicD(path[k], norms[k], group_delta_);
|
||||
if (j == k)
|
||||
{
|
||||
PointD pt4 = PointD(pt3.x + vec.x * group_delta_, pt3.y + vec.y * group_delta_);
|
||||
PointD pt = IntersectPoint(pt1, pt2, pt3, pt4);
|
||||
#ifdef USINGZ
|
||||
pt.z = ptQ.z;
|
||||
#endif
|
||||
//get the second intersect point through reflecion
|
||||
path_out.push_back(Point64(ReflectPoint(pt, ptQ)));
|
||||
path_out.push_back(Point64(pt));
|
||||
}
|
||||
else
|
||||
{
|
||||
PointD pt4 = GetPerpendicD(path[j], norms[k], group_delta_);
|
||||
PointD pt = IntersectPoint(pt1, pt2, pt3, pt4);
|
||||
#ifdef USINGZ
|
||||
pt.z = ptQ.z;
|
||||
#endif
|
||||
path_out.push_back(Point64(pt));
|
||||
//get the second intersect point through reflecion
|
||||
path_out.push_back(Point64(ReflectPoint(pt, ptQ)));
|
||||
}
|
||||
}
|
||||
|
||||
void ClipperOffset::DoMiter(const Path64& path, size_t j, size_t k, double cos_a)
|
||||
{
|
||||
double q = group_delta_ / (cos_a + 1);
|
||||
#ifdef USINGZ
|
||||
path_out.push_back(Point64(
|
||||
path[j].x + (norms[k].x + norms[j].x) * q,
|
||||
path[j].y + (norms[k].y + norms[j].y) * q,
|
||||
path[j].z));
|
||||
#else
|
||||
path_out.push_back(Point64(
|
||||
path[j].x + (norms[k].x + norms[j].x) * q,
|
||||
path[j].y + (norms[k].y + norms[j].y) * q));
|
||||
#endif
|
||||
}
|
||||
|
||||
void ClipperOffset::DoRound(const Path64& path, size_t j, size_t k, double angle)
|
||||
{
|
||||
if (deltaCallback64_) {
|
||||
// when deltaCallback64_ is assigned, group_delta_ won't be constant,
|
||||
// so we'll need to do the following calculations for *every* vertex.
|
||||
double abs_delta = std::fabs(group_delta_);
|
||||
double arcTol = (arc_tolerance_ > floating_point_tolerance ?
|
||||
std::min(abs_delta, arc_tolerance_) :
|
||||
std::log10(2 + abs_delta) * default_arc_tolerance);
|
||||
double steps_per_360 = std::min(PI / std::acos(1 - arcTol / abs_delta), abs_delta * PI);
|
||||
step_sin_ = std::sin(2 * PI / steps_per_360);
|
||||
step_cos_ = std::cos(2 * PI / steps_per_360);
|
||||
if (group_delta_ < 0.0) step_sin_ = -step_sin_;
|
||||
steps_per_rad_ = steps_per_360 / (2 * PI);
|
||||
}
|
||||
|
||||
Point64 pt = path[j];
|
||||
PointD offsetVec = PointD(norms[k].x * group_delta_, norms[k].y * group_delta_);
|
||||
|
||||
if (j == k) offsetVec.Negate();
|
||||
#ifdef USINGZ
|
||||
path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y, pt.z));
|
||||
#else
|
||||
path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y));
|
||||
#endif
|
||||
int steps = static_cast<int>(std::ceil(steps_per_rad_ * std::abs(angle))); // #448, #456
|
||||
for (int i = 1; i < steps; ++i) // ie 1 less than steps
|
||||
{
|
||||
offsetVec = PointD(offsetVec.x * step_cos_ - step_sin_ * offsetVec.y,
|
||||
offsetVec.x * step_sin_ + offsetVec.y * step_cos_);
|
||||
#ifdef USINGZ
|
||||
path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y, pt.z));
|
||||
#else
|
||||
path_out.push_back(Point64(pt.x + offsetVec.x, pt.y + offsetVec.y));
|
||||
#endif
|
||||
}
|
||||
path_out.push_back(GetPerpendic(path[j], norms[j], group_delta_));
|
||||
}
|
||||
|
||||
void ClipperOffset::OffsetPoint(Group& group, const Path64& path, size_t j, size_t k)
|
||||
{
|
||||
// Let A = change in angle where edges join
|
||||
// A == 0: ie no change in angle (flat join)
|
||||
// A == PI: edges 'spike'
|
||||
// sin(A) < 0: right turning
|
||||
// cos(A) < 0: change in angle is more than 90 degree
|
||||
|
||||
if (path[j] == path[k]) { k = j; return; }
|
||||
|
||||
double sin_a = CrossProduct(norms[j], norms[k]);
|
||||
double cos_a = DotProduct(norms[j], norms[k]);
|
||||
if (sin_a > 1.0) sin_a = 1.0;
|
||||
else if (sin_a < -1.0) sin_a = -1.0;
|
||||
|
||||
if (deltaCallback64_) {
|
||||
group_delta_ = deltaCallback64_(path, norms, j, k);
|
||||
if (group.is_reversed) group_delta_ = -group_delta_;
|
||||
}
|
||||
if (std::fabs(group_delta_) <= floating_point_tolerance)
|
||||
{
|
||||
path_out.push_back(path[j]);
|
||||
return;
|
||||
}
|
||||
|
||||
if (cos_a > -0.99 && (sin_a * group_delta_ < 0)) // test for concavity first (#593)
|
||||
{
|
||||
// is concave
|
||||
path_out.push_back(GetPerpendic(path[j], norms[k], group_delta_));
|
||||
// this extra point is the only (simple) way to ensure that
|
||||
// path reversals are fully cleaned with the trailing clipper
|
||||
path_out.push_back(path[j]); // (#405)
|
||||
path_out.push_back(GetPerpendic(path[j], norms[j], group_delta_));
|
||||
}
|
||||
else if (cos_a > 0.999 && join_type_ != JoinType::Round)
|
||||
{
|
||||
// almost straight - less than 2.5 degree (#424, #482, #526 & #724)
|
||||
DoMiter(path, j, k, cos_a);
|
||||
}
|
||||
else if (join_type_ == JoinType::Miter)
|
||||
{
|
||||
// miter unless the angle is sufficiently acute to exceed ML
|
||||
if (cos_a > temp_lim_ - 1) DoMiter(path, j, k, cos_a);
|
||||
else DoSquare(path, j, k);
|
||||
}
|
||||
else if (join_type_ == JoinType::Round)
|
||||
DoRound(path, j, k, std::atan2(sin_a, cos_a));
|
||||
else if ( join_type_ == JoinType::Bevel)
|
||||
DoBevel(path, j, k);
|
||||
else
|
||||
DoSquare(path, j, k);
|
||||
}
|
||||
|
||||
void ClipperOffset::OffsetPolygon(Group& group, const Path64& path)
|
||||
{
|
||||
path_out.clear();
|
||||
for (Path64::size_type j = 0, k = path.size() -1; j < path.size(); k = j, ++j)
|
||||
OffsetPoint(group, path, j, k);
|
||||
solution.push_back(path_out);
|
||||
}
|
||||
|
||||
void ClipperOffset::OffsetOpenJoined(Group& group, const Path64& path)
|
||||
{
|
||||
OffsetPolygon(group, path);
|
||||
Path64 reverse_path(path);
|
||||
std::reverse(reverse_path.begin(), reverse_path.end());
|
||||
|
||||
//rebuild normals // BuildNormals(path);
|
||||
std::reverse(norms.begin(), norms.end());
|
||||
norms.push_back(norms[0]);
|
||||
norms.erase(norms.begin());
|
||||
NegatePath(norms);
|
||||
|
||||
OffsetPolygon(group, reverse_path);
|
||||
}
|
||||
|
||||
void ClipperOffset::OffsetOpenPath(Group& group, const Path64& path)
|
||||
{
|
||||
// do the line start cap
|
||||
if (deltaCallback64_) group_delta_ = deltaCallback64_(path, norms, 0, 0);
|
||||
|
||||
if (std::fabs(group_delta_) <= floating_point_tolerance)
|
||||
path_out.push_back(path[0]);
|
||||
else
|
||||
{
|
||||
switch (end_type_)
|
||||
{
|
||||
case EndType::Butt:
|
||||
DoBevel(path, 0, 0);
|
||||
break;
|
||||
case EndType::Round:
|
||||
DoRound(path, 0, 0, PI);
|
||||
break;
|
||||
default:
|
||||
DoSquare(path, 0, 0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
size_t highI = path.size() - 1;
|
||||
// offset the left side going forward
|
||||
for (Path64::size_type j = 1, k = 0; j < highI; k = j, ++j)
|
||||
OffsetPoint(group, path, j, k);
|
||||
|
||||
// reverse normals
|
||||
for (size_t i = highI; i > 0; --i)
|
||||
norms[i] = PointD(-norms[i - 1].x, -norms[i - 1].y);
|
||||
norms[0] = norms[highI];
|
||||
|
||||
// do the line end cap
|
||||
if (deltaCallback64_)
|
||||
group_delta_ = deltaCallback64_(path, norms, highI, highI);
|
||||
|
||||
if (std::fabs(group_delta_) <= floating_point_tolerance)
|
||||
path_out.push_back(path[highI]);
|
||||
else
|
||||
{
|
||||
switch (end_type_)
|
||||
{
|
||||
case EndType::Butt:
|
||||
DoBevel(path, highI, highI);
|
||||
break;
|
||||
case EndType::Round:
|
||||
DoRound(path, highI, highI, PI);
|
||||
break;
|
||||
default:
|
||||
DoSquare(path, highI, highI);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = highI, k = 0; j > 0; k = j, --j)
|
||||
OffsetPoint(group, path, j, k);
|
||||
solution.push_back(path_out);
|
||||
}
|
||||
|
||||
void ClipperOffset::DoGroupOffset(Group& group)
|
||||
{
|
||||
if (group.end_type == EndType::Polygon)
|
||||
{
|
||||
// a straight path (2 points) can now also be 'polygon' offset
|
||||
// where the ends will be treated as (180 deg.) joins
|
||||
if (group.lowest_path_idx < 0) delta_ = std::abs(delta_);
|
||||
group_delta_ = (group.is_reversed) ? -delta_ : delta_;
|
||||
}
|
||||
else
|
||||
group_delta_ = std::abs(delta_);// *0.5;
|
||||
|
||||
double abs_delta = std::fabs(group_delta_);
|
||||
if (!ValidateBounds(group.bounds_list, abs_delta))
|
||||
{
|
||||
DoError(range_error_i);
|
||||
error_code_ |= range_error_i;
|
||||
return;
|
||||
}
|
||||
|
||||
join_type_ = group.join_type;
|
||||
end_type_ = group.end_type;
|
||||
|
||||
if (group.join_type == JoinType::Round || group.end_type == EndType::Round)
|
||||
{
|
||||
// calculate a sensible number of steps (for 360 deg for the given offset)
|
||||
// arcTol - when arc_tolerance_ is undefined (0), the amount of
|
||||
// curve imprecision that's allowed is based on the size of the
|
||||
// offset (delta). Obviously very large offsets will almost always
|
||||
// require much less precision. See also offset_triginometry2.svg
|
||||
double arcTol = (arc_tolerance_ > floating_point_tolerance ?
|
||||
std::min(abs_delta, arc_tolerance_) :
|
||||
std::log10(2 + abs_delta) * default_arc_tolerance);
|
||||
|
||||
double steps_per_360 = std::min(PI / std::acos(1 - arcTol / abs_delta), abs_delta * PI);
|
||||
step_sin_ = std::sin(2 * PI / steps_per_360);
|
||||
step_cos_ = std::cos(2 * PI / steps_per_360);
|
||||
if (group_delta_ < 0.0) step_sin_ = -step_sin_;
|
||||
steps_per_rad_ = steps_per_360 / (2 * PI);
|
||||
}
|
||||
|
||||
std::vector<Rect64>::const_iterator path_rect_it = group.bounds_list.cbegin();
|
||||
std::vector<bool>::const_iterator is_hole_it = group.is_hole_list.cbegin();
|
||||
Paths64::const_iterator path_in_it = group.paths_in.cbegin();
|
||||
for ( ; path_in_it != group.paths_in.cend(); ++path_in_it, ++path_rect_it, ++is_hole_it)
|
||||
{
|
||||
if (!path_rect_it->IsValid()) continue;
|
||||
Path64::size_type pathLen = path_in_it->size();
|
||||
path_out.clear();
|
||||
|
||||
if (pathLen == 1) // single point
|
||||
{
|
||||
if (group_delta_ < 1) continue;
|
||||
const Point64& pt = (*path_in_it)[0];
|
||||
//single vertex so build a circle or square ...
|
||||
if (group.join_type == JoinType::Round)
|
||||
{
|
||||
double radius = abs_delta;
|
||||
int steps = static_cast<int>(std::ceil(steps_per_rad_ * 2 * PI)); //#617
|
||||
path_out = Ellipse(pt, radius, radius, steps);
|
||||
#ifdef USINGZ
|
||||
for (auto& p : path_out) p.z = pt.z;
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
int d = (int)std::ceil(abs_delta);
|
||||
Rect64 r = Rect64(pt.x - d, pt.y - d, pt.x + d, pt.y + d);
|
||||
path_out = r.AsPath();
|
||||
#ifdef USINGZ
|
||||
for (auto& p : path_out) p.z = pt.z;
|
||||
#endif
|
||||
}
|
||||
solution.push_back(path_out);
|
||||
continue;
|
||||
} // end of offsetting a single point
|
||||
|
||||
// when shrinking outer paths, make sure they can shrink this far (#593)
|
||||
// also when shrinking holes, make sure they too can shrink this far (#715)
|
||||
if ((group_delta_ > 0) == ToggleBoolIf(*is_hole_it, group.is_reversed) &&
|
||||
(std::min(path_rect_it->Width(), path_rect_it->Height()) <= -group_delta_ * 2) )
|
||||
continue;
|
||||
|
||||
if ((pathLen == 2) && (group.end_type == EndType::Joined))
|
||||
end_type_ = (group.join_type == JoinType::Round) ?
|
||||
EndType::Round :
|
||||
EndType::Square;
|
||||
|
||||
BuildNormals(*path_in_it);
|
||||
if (end_type_ == EndType::Polygon) OffsetPolygon(group, *path_in_it);
|
||||
else if (end_type_ == EndType::Joined) OffsetOpenJoined(group, *path_in_it);
|
||||
else OffsetOpenPath(group, *path_in_it);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
size_t ClipperOffset::CalcSolutionCapacity()
|
||||
{
|
||||
size_t result = 0;
|
||||
for (const Group& g : groups_)
|
||||
result += (g.end_type == EndType::Joined) ? g.paths_in.size() * 2 : g.paths_in.size();
|
||||
return result;
|
||||
}
|
||||
|
||||
bool ClipperOffset::CheckReverseOrientation()
|
||||
{
|
||||
// nb: this assumes there's consistency in orientation between groups
|
||||
bool is_reversed_orientation = false;
|
||||
for (const Group& g : groups_)
|
||||
if (g.end_type == EndType::Polygon)
|
||||
{
|
||||
is_reversed_orientation = g.is_reversed;
|
||||
break;
|
||||
}
|
||||
return is_reversed_orientation;
|
||||
}
|
||||
|
||||
void ClipperOffset::ExecuteInternal(double delta)
|
||||
{
|
||||
error_code_ = 0;
|
||||
solution.clear();
|
||||
if (groups_.size() == 0) return;
|
||||
solution.reserve(CalcSolutionCapacity());
|
||||
|
||||
if (std::abs(delta) < 0.5) // ie: offset is insignificant
|
||||
{
|
||||
Paths64::size_type sol_size = 0;
|
||||
for (const Group& group : groups_) sol_size += group.paths_in.size();
|
||||
solution.reserve(sol_size);
|
||||
for (const Group& group : groups_)
|
||||
copy(group.paths_in.begin(), group.paths_in.end(), back_inserter(solution));
|
||||
return;
|
||||
}
|
||||
|
||||
temp_lim_ = (miter_limit_ <= 1) ?
|
||||
2.0 :
|
||||
2.0 / (miter_limit_ * miter_limit_);
|
||||
|
||||
delta_ = delta;
|
||||
std::vector<Group>::iterator git;
|
||||
for (git = groups_.begin(); git != groups_.end(); ++git)
|
||||
{
|
||||
DoGroupOffset(*git);
|
||||
if (!error_code_) continue; // all OK
|
||||
solution.clear();
|
||||
}
|
||||
}
|
||||
|
||||
void ClipperOffset::Execute(double delta, Paths64& paths)
|
||||
{
|
||||
paths.clear();
|
||||
|
||||
ExecuteInternal(delta);
|
||||
if (!solution.size()) return;
|
||||
|
||||
bool paths_reversed = CheckReverseOrientation();
|
||||
//clean up self-intersections ...
|
||||
Clipper64 c;
|
||||
c.PreserveCollinear(false);
|
||||
//the solution should retain the orientation of the input
|
||||
c.ReverseSolution(reverse_solution_ != paths_reversed);
|
||||
#ifdef USINGZ
|
||||
if (zCallback64_) { c.SetZCallback(zCallback64_); }
|
||||
#endif
|
||||
c.AddSubject(solution);
|
||||
if (paths_reversed)
|
||||
c.Execute(ClipType::Union, FillRule::Negative, paths);
|
||||
else
|
||||
c.Execute(ClipType::Union, FillRule::Positive, paths);
|
||||
}
|
||||
|
||||
|
||||
void ClipperOffset::Execute(double delta, PolyTree64& polytree)
|
||||
{
|
||||
polytree.Clear();
|
||||
|
||||
ExecuteInternal(delta);
|
||||
if (!solution.size()) return;
|
||||
|
||||
bool paths_reversed = CheckReverseOrientation();
|
||||
//clean up self-intersections ...
|
||||
Clipper64 c;
|
||||
c.PreserveCollinear(false);
|
||||
//the solution should retain the orientation of the input
|
||||
c.ReverseSolution (reverse_solution_ != paths_reversed);
|
||||
#ifdef USINGZ
|
||||
if (zCallback64_) {
|
||||
c.SetZCallback(zCallback64_);
|
||||
}
|
||||
#endif
|
||||
c.AddSubject(solution);
|
||||
|
||||
|
||||
if (paths_reversed)
|
||||
c.Execute(ClipType::Union, FillRule::Negative, polytree);
|
||||
else
|
||||
c.Execute(ClipType::Union, FillRule::Positive, polytree);
|
||||
}
|
||||
|
||||
void ClipperOffset::Execute(DeltaCallback64 delta_cb, Paths64& paths)
|
||||
{
|
||||
deltaCallback64_ = delta_cb;
|
||||
Execute(1.0, paths);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
1005
engine/thirdparty/clipper2/src/clipper.rectclip.cpp
vendored
Normal file
1005
engine/thirdparty/clipper2/src/clipper.rectclip.cpp
vendored
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue