going/engine/thirdparty/manifold/src/subdivision.cpp

810 lines
31 KiB
C++

// Copyright 2024 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "./impl.h"
#include "./parallel.h"
template <>
struct std::hash<manifold::ivec4> {
size_t operator()(const manifold::ivec4& p) const {
return std::hash<int>()(p.x) ^ std::hash<int>()(p.y) ^
std::hash<int>()(p.z) ^ std::hash<int>()(p.w);
}
};
namespace {
using namespace manifold;
class Partition {
public:
// The cached partitions don't have idx - it's added to the copy returned
// from GetPartition that contains the mapping of the input divisions into the
// sorted divisions that are uniquely cached.
ivec4 idx;
ivec4 sortedDivisions;
Vec<vec4> vertBary;
Vec<ivec3> triVert;
int InteriorOffset() const {
return sortedDivisions[0] + sortedDivisions[1] + sortedDivisions[2] +
sortedDivisions[3];
}
int NumInterior() const { return vertBary.size() - InteriorOffset(); }
static Partition GetPartition(ivec4 divisions) {
if (divisions[0] == 0) return Partition(); // skip wrong side of quad
ivec4 sortedDiv = divisions;
ivec4 triIdx = {0, 1, 2, 3};
if (divisions[3] == 0) { // triangle
if (sortedDiv[2] > sortedDiv[1]) {
std::swap(sortedDiv[2], sortedDiv[1]);
std::swap(triIdx[2], triIdx[1]);
}
if (sortedDiv[1] > sortedDiv[0]) {
std::swap(sortedDiv[1], sortedDiv[0]);
std::swap(triIdx[1], triIdx[0]);
if (sortedDiv[2] > sortedDiv[1]) {
std::swap(sortedDiv[2], sortedDiv[1]);
std::swap(triIdx[2], triIdx[1]);
}
}
} else { // quad
int minIdx = 0;
int min = divisions[minIdx];
int next = divisions[1];
for (const int i : {1, 2, 3}) {
const int n = divisions[(i + 1) % 4];
if (divisions[i] < min || (divisions[i] == min && n < next)) {
minIdx = i;
min = divisions[i];
next = n;
}
}
// Backwards (mirrored) quads get a separate cache key for now for
// simplicity, so there is no reversal necessary for quads when
// re-indexing.
ivec4 tmp = sortedDiv;
for (const int i : {0, 1, 2, 3}) {
triIdx[i] = (i + minIdx) % 4;
sortedDiv[i] = tmp[triIdx[i]];
}
}
Partition partition = GetCachedPartition(sortedDiv);
partition.idx = triIdx;
return partition;
}
Vec<ivec3> Reindex(ivec4 triVerts, ivec4 edgeOffsets, bvec4 edgeFwd,
int interiorOffset) const {
Vec<int> newVerts;
newVerts.reserve(vertBary.size());
ivec4 triIdx = idx;
ivec4 outTri = {0, 1, 2, 3};
if (triVerts[3] < 0 && idx[1] != Next3(idx[0])) {
triIdx = {idx[2], idx[0], idx[1], idx[3]};
edgeFwd = !edgeFwd;
std::swap(outTri[0], outTri[1]);
}
for (const int i : {0, 1, 2, 3}) {
if (triVerts[triIdx[i]] >= 0) newVerts.push_back(triVerts[triIdx[i]]);
}
for (const int i : {0, 1, 2, 3}) {
const int n = sortedDivisions[i] - 1;
int offset = edgeOffsets[idx[i]] + (edgeFwd[idx[i]] ? 0 : n - 1);
for (int j = 0; j < n; ++j) {
newVerts.push_back(offset);
offset += edgeFwd[idx[i]] ? 1 : -1;
}
}
const int offset = interiorOffset - newVerts.size();
size_t old = newVerts.size();
newVerts.resize(vertBary.size());
std::iota(newVerts.begin() + old, newVerts.end(), old + offset);
const int numTri = triVert.size();
Vec<ivec3> newTriVert(numTri);
for_each_n(autoPolicy(numTri), countAt(0), numTri,
[&newTriVert, &outTri, &newVerts, this](const int tri) {
for (const int j : {0, 1, 2}) {
newTriVert[tri][outTri[j]] = newVerts[triVert[tri][j]];
}
});
return newTriVert;
}
private:
static inline auto cacheLock = std::mutex();
static inline auto cache =
std::unordered_map<ivec4, std::unique_ptr<Partition>>();
// This triangulation is purely topological - it depends only on the number of
// divisions of the three sides of the triangle. This allows them to be cached
// and reused for similar triangles. The shape of the final surface is defined
// by the tangents and the barycentric coordinates of the new verts. For
// triangles, the input must be sorted: n[0] >= n[1] >= n[2] > 0.
static Partition GetCachedPartition(ivec4 n) {
{
auto lockGuard = std::lock_guard<std::mutex>(cacheLock);
auto cached = cache.find(n);
if (cached != cache.end()) {
return *cached->second;
}
}
Partition partition;
partition.sortedDivisions = n;
if (n[3] > 0) { // quad
partition.vertBary.push_back({1, 0, 0, 0});
partition.vertBary.push_back({0, 1, 0, 0});
partition.vertBary.push_back({0, 0, 1, 0});
partition.vertBary.push_back({0, 0, 0, 1});
ivec4 edgeOffsets;
edgeOffsets[0] = 4;
for (const int i : {0, 1, 2, 3}) {
if (i > 0) {
edgeOffsets[i] = edgeOffsets[i - 1] + n[i - 1] - 1;
}
const vec4 nextBary = partition.vertBary[(i + 1) % 4];
for (int j = 1; j < n[i]; ++j) {
partition.vertBary.push_back(
la::lerp(partition.vertBary[i], nextBary, (double)j / n[i]));
}
}
PartitionQuad(partition.triVert, partition.vertBary, {0, 1, 2, 3},
edgeOffsets, n - 1, {true, true, true, true});
} else { // tri
partition.vertBary.push_back({1, 0, 0, 0});
partition.vertBary.push_back({0, 1, 0, 0});
partition.vertBary.push_back({0, 0, 1, 0});
for (const int i : {0, 1, 2}) {
const vec4 nextBary = partition.vertBary[(i + 1) % 3];
for (int j = 1; j < n[i]; ++j) {
partition.vertBary.push_back(
la::lerp(partition.vertBary[i], nextBary, (double)j / n[i]));
}
}
const ivec3 edgeOffsets = {3, 3 + n[0] - 1, 3 + n[0] - 1 + n[1] - 1};
const double f = n[2] * n[2] + n[0] * n[0];
if (n[1] == 1) {
if (n[0] == 1) {
partition.triVert.push_back({0, 1, 2});
} else {
PartitionFan(partition.triVert, {0, 1, 2}, n[0] - 1, edgeOffsets[0]);
}
} else if (n[1] * n[1] > f - std::sqrt(2.0) * n[0] * n[2]) { // acute-ish
partition.triVert.push_back({edgeOffsets[1] - 1, 1, edgeOffsets[1]});
PartitionQuad(partition.triVert, partition.vertBary,
{edgeOffsets[1] - 1, edgeOffsets[1], 2, 0},
{-1, edgeOffsets[1] + 1, edgeOffsets[2], edgeOffsets[0]},
{0, n[1] - 2, n[2] - 1, n[0] - 2},
{true, true, true, true});
} else { // obtuse -> spit into two acute
// portion of n[0] under n[2]
const int ns =
std::min(n[0] - 2, (int)std::round((f - n[1] * n[1]) / (2 * n[0])));
// height from n[0]: nh <= n[2]
const int nh =
std::max(1., std::round(std::sqrt(n[2] * n[2] - ns * ns)));
const int hOffset = partition.vertBary.size();
const vec4 middleBary = partition.vertBary[edgeOffsets[0] + ns - 1];
for (int j = 1; j < nh; ++j) {
partition.vertBary.push_back(
la::lerp(partition.vertBary[2], middleBary, (double)j / nh));
}
partition.triVert.push_back({edgeOffsets[1] - 1, 1, edgeOffsets[1]});
PartitionQuad(
partition.triVert, partition.vertBary,
{edgeOffsets[1] - 1, edgeOffsets[1], 2, edgeOffsets[0] + ns - 1},
{-1, edgeOffsets[1] + 1, hOffset, edgeOffsets[0] + ns},
{0, n[1] - 2, nh - 1, n[0] - ns - 2}, {true, true, true, true});
if (n[2] == 1) {
PartitionFan(partition.triVert, {0, edgeOffsets[0] + ns - 1, 2},
ns - 1, edgeOffsets[0]);
} else {
if (ns == 1) {
partition.triVert.push_back({hOffset, 2, edgeOffsets[2]});
PartitionQuad(partition.triVert, partition.vertBary,
{hOffset, edgeOffsets[2], 0, edgeOffsets[0]},
{-1, edgeOffsets[2] + 1, -1, hOffset + nh - 2},
{0, n[2] - 2, ns - 1, nh - 2},
{true, true, true, false});
} else {
partition.triVert.push_back({hOffset - 1, 0, edgeOffsets[0]});
PartitionQuad(
partition.triVert, partition.vertBary,
{hOffset - 1, edgeOffsets[0], edgeOffsets[0] + ns - 1, 2},
{-1, edgeOffsets[0] + 1, hOffset + nh - 2, edgeOffsets[2]},
{0, ns - 2, nh - 1, n[2] - 2}, {true, true, false, true});
}
}
}
}
auto lockGuard = std::lock_guard<std::mutex>(cacheLock);
cache.insert({n, std::make_unique<Partition>(partition)});
return partition;
}
// Side 0 has added edges while sides 1 and 2 do not. Fan spreads from vert 2.
static void PartitionFan(Vec<ivec3>& triVert, ivec3 cornerVerts, int added,
int edgeOffset) {
int last = cornerVerts[0];
for (int i = 0; i < added; ++i) {
const int next = edgeOffset + i;
triVert.push_back({last, next, cornerVerts[2]});
last = next;
}
triVert.push_back({last, cornerVerts[1], cornerVerts[2]});
}
// Partitions are parallel to the first edge unless two consecutive edgeAdded
// are zero, in which case a terminal triangulation is performed.
static void PartitionQuad(Vec<ivec3>& triVert, Vec<vec4>& vertBary,
ivec4 cornerVerts, ivec4 edgeOffsets,
ivec4 edgeAdded, bvec4 edgeFwd) {
auto GetEdgeVert = [&](int edge, int idx) {
return edgeOffsets[edge] + (edgeFwd[edge] ? 1 : -1) * idx;
};
DEBUG_ASSERT(la::all(la::gequal(edgeAdded, ivec4(0))), logicErr,
"negative divisions!");
int corner = -1;
int last = 3;
int maxEdge = -1;
for (const int i : {0, 1, 2, 3}) {
if (corner == -1 && edgeAdded[i] == 0 && edgeAdded[last] == 0) {
corner = i;
}
if (edgeAdded[i] > 0) {
maxEdge = maxEdge == -1 ? i : -2;
}
last = i;
}
if (corner >= 0) { // terminate
if (maxEdge >= 0) {
ivec4 edge = (ivec4(0, 1, 2, 3) + maxEdge) % 4;
const int middle = edgeAdded[maxEdge] / 2;
triVert.push_back({cornerVerts[edge[2]], cornerVerts[edge[3]],
GetEdgeVert(maxEdge, middle)});
int last = cornerVerts[edge[0]];
for (int i = 0; i <= middle; ++i) {
const int next = GetEdgeVert(maxEdge, i);
triVert.push_back({cornerVerts[edge[3]], last, next});
last = next;
}
last = cornerVerts[edge[1]];
for (int i = edgeAdded[maxEdge] - 1; i >= middle; --i) {
const int next = GetEdgeVert(maxEdge, i);
triVert.push_back({cornerVerts[edge[2]], next, last});
last = next;
}
} else {
int sideVert = cornerVerts[0]; // initial value is unused
for (const int j : {1, 2}) {
const int side = (corner + j) % 4;
if (j == 2 && edgeAdded[side] > 0) {
triVert.push_back(
{cornerVerts[side], GetEdgeVert(side, 0), sideVert});
} else {
sideVert = cornerVerts[side];
}
for (int i = 0; i < edgeAdded[side]; ++i) {
const int nextVert = GetEdgeVert(side, i);
triVert.push_back({cornerVerts[corner], sideVert, nextVert});
sideVert = nextVert;
}
if (j == 2 || edgeAdded[side] == 0) {
triVert.push_back({cornerVerts[corner], sideVert,
cornerVerts[(corner + j + 1) % 4]});
}
}
}
return;
}
// recursively partition
const int partitions = 1 + std::min(edgeAdded[1], edgeAdded[3]);
ivec4 newCornerVerts = {cornerVerts[1], -1, -1, cornerVerts[0]};
ivec4 newEdgeOffsets = {edgeOffsets[1], -1,
GetEdgeVert(3, edgeAdded[3] + 1), edgeOffsets[0]};
ivec4 newEdgeAdded = {0, -1, 0, edgeAdded[0]};
bvec4 newEdgeFwd = {edgeFwd[1], true, edgeFwd[3], edgeFwd[0]};
for (int i = 1; i < partitions; ++i) {
const int cornerOffset1 = (edgeAdded[1] * i) / partitions;
const int cornerOffset3 =
edgeAdded[3] - 1 - (edgeAdded[3] * i) / partitions;
const int nextOffset1 = GetEdgeVert(1, cornerOffset1 + 1);
const int nextOffset3 = GetEdgeVert(3, cornerOffset3 + 1);
const int added = std::round(la::lerp(
(double)edgeAdded[0], (double)edgeAdded[2], (double)i / partitions));
newCornerVerts[1] = GetEdgeVert(1, cornerOffset1);
newCornerVerts[2] = GetEdgeVert(3, cornerOffset3);
newEdgeAdded[0] = std::abs(nextOffset1 - newEdgeOffsets[0]) - 1;
newEdgeAdded[1] = added;
newEdgeAdded[2] = std::abs(nextOffset3 - newEdgeOffsets[2]) - 1;
newEdgeOffsets[1] = vertBary.size();
newEdgeOffsets[2] = nextOffset3;
for (int j = 0; j < added; ++j) {
vertBary.push_back(la::lerp(vertBary[newCornerVerts[1]],
vertBary[newCornerVerts[2]],
(j + 1.0) / (added + 1.0)));
}
PartitionQuad(triVert, vertBary, newCornerVerts, newEdgeOffsets,
newEdgeAdded, newEdgeFwd);
newCornerVerts[0] = newCornerVerts[1];
newCornerVerts[3] = newCornerVerts[2];
newEdgeAdded[3] = newEdgeAdded[1];
newEdgeOffsets[0] = nextOffset1;
newEdgeOffsets[3] = newEdgeOffsets[1] + newEdgeAdded[1] - 1;
newEdgeFwd[3] = false;
}
newCornerVerts[1] = cornerVerts[2];
newCornerVerts[2] = cornerVerts[3];
newEdgeOffsets[1] = edgeOffsets[2];
newEdgeAdded[0] =
edgeAdded[1] - std::abs(newEdgeOffsets[0] - edgeOffsets[1]);
newEdgeAdded[1] = edgeAdded[2];
newEdgeAdded[2] = std::abs(newEdgeOffsets[2] - edgeOffsets[3]) - 1;
newEdgeOffsets[2] = edgeOffsets[3];
newEdgeFwd[1] = edgeFwd[2];
PartitionQuad(triVert, vertBary, newCornerVerts, newEdgeOffsets,
newEdgeAdded, newEdgeFwd);
}
};
} // namespace
namespace manifold {
/**
* Returns the tri side index (0-2) connected to the other side of this quad if
* this tri is part of a quad, or -1 otherwise.
*/
int Manifold::Impl::GetNeighbor(int tri) const {
int neighbor = -1;
for (const int i : {0, 1, 2}) {
if (IsMarkedInsideQuad(3 * tri + i)) {
neighbor = neighbor == -1 ? i : -2;
}
}
return neighbor;
}
/**
* For the given triangle index, returns either the three halfedge indices of
* that triangle and halfedges[3] = -1, or if the triangle is part of a quad, it
* returns those four indices. If the triangle is part of a quad and is not the
* lower of the two triangle indices, it returns all -1s.
*/
ivec4 Manifold::Impl::GetHalfedges(int tri) const {
ivec4 halfedges(-1);
for (const int i : {0, 1, 2}) {
halfedges[i] = 3 * tri + i;
}
const int neighbor = GetNeighbor(tri);
if (neighbor >= 0) { // quad
const int pair = halfedge_[3 * tri + neighbor].pairedHalfedge;
if (pair / 3 < tri) {
return ivec4(-1); // only process lower tri index
}
// The order here matters to keep small quads split the way they started, or
// else it can create a 4-manifold edge.
halfedges[2] = NextHalfedge(halfedges[neighbor]);
halfedges[3] = NextHalfedge(halfedges[2]);
halfedges[0] = NextHalfedge(pair);
halfedges[1] = NextHalfedge(halfedges[0]);
}
return halfedges;
}
/**
* Returns the BaryIndices, which gives the tri and indices (0-3), such that
* GetHalfedges(val.tri)[val.start4] points back to this halfedge, and val.end4
* will point to the next one. This function handles this for both triangles and
* quads. Returns {-1, -1, -1} if the edge is the interior of a quad.
*/
Manifold::Impl::BaryIndices Manifold::Impl::GetIndices(int halfedge) const {
int tri = halfedge / 3;
int idx = halfedge % 3;
const int neighbor = GetNeighbor(tri);
if (idx == neighbor) {
return {-1, -1, -1};
}
if (neighbor < 0) { // tri
return {tri, idx, Next3(idx)};
} else { // quad
const int pair = halfedge_[3 * tri + neighbor].pairedHalfedge;
if (pair / 3 < tri) {
tri = pair / 3;
idx = Next3(neighbor) == idx ? 0 : 1;
} else {
idx = Next3(neighbor) == idx ? 2 : 3;
}
return {tri, idx, (idx + 1) % 4};
}
}
/**
* Retained verts are part of several triangles, and it doesn't matter which one
* the vertBary refers to. Here, whichever is last will win and it's done on the
* CPU for simplicity for now. Using AtomicCAS on .tri should work for a GPU
* version if desired.
*/
void Manifold::Impl::FillRetainedVerts(Vec<Barycentric>& vertBary) const {
const int numTri = halfedge_.size() / 3;
for (int tri = 0; tri < numTri; ++tri) {
for (const int i : {0, 1, 2}) {
const BaryIndices indices = GetIndices(3 * tri + i);
if (indices.start4 < 0) continue; // skip quad interiors
vec4 uvw(0.0);
uvw[indices.start4] = 1;
vertBary[halfedge_[3 * tri + i].startVert] = {indices.tri, uvw};
}
}
}
/**
* Split each edge into n pieces as defined by calling the edgeDivisions
* function, and sub-triangulate each triangle accordingly. This function
* doesn't run Finish(), as that is expensive and it'll need to be run after
* the new vertices have moved, which is a likely scenario after refinement
* (smoothing).
*/
Vec<Barycentric> Manifold::Impl::Subdivide(
std::function<int(vec3, vec4, vec4)> edgeDivisions, bool keepInterior) {
Vec<TmpEdge> edges = CreateTmpEdges(halfedge_);
const int numVert = NumVert();
const int numEdge = edges.size();
const int numTri = NumTri();
Vec<int> half2Edge(2 * numEdge);
auto policy = autoPolicy(numEdge, 1e4);
for_each_n(policy, countAt(0), numEdge,
[&half2Edge, &edges, this](const int edge) {
const int idx = edges[edge].halfedgeIdx;
half2Edge[idx] = edge;
half2Edge[halfedge_[idx].pairedHalfedge] = edge;
});
Vec<ivec4> faceHalfedges(numTri);
for_each_n(policy, countAt(0), numTri, [&faceHalfedges, this](const int tri) {
faceHalfedges[tri] = GetHalfedges(tri);
});
Vec<int> edgeAdded(numEdge);
for_each_n(policy, countAt(0), numEdge,
[&edgeAdded, &edges, edgeDivisions, this](const int i) {
const TmpEdge edge = edges[i];
const int hIdx = edge.halfedgeIdx;
if (IsMarkedInsideQuad(hIdx)) {
edgeAdded[i] = 0;
return;
}
const vec3 vec = vertPos_[edge.first] - vertPos_[edge.second];
const vec4 tangent0 = halfedgeTangent_.empty()
? vec4(0.0)
: halfedgeTangent_[hIdx];
const vec4 tangent1 =
halfedgeTangent_.empty()
? vec4(0.0)
: halfedgeTangent_[halfedge_[hIdx].pairedHalfedge];
edgeAdded[i] = edgeDivisions(vec, tangent0, tangent1);
});
if (keepInterior) {
// Triangles where the greatest number of divisions exceeds the sum of the
// other two sides will be triangulated as a strip, since if the sub-edges
// were all equal length it would be degenerate. This leads to poor results
// with RefineToTolerance, so we avoid this case by adding some extra
// divisions to the short sides so that the triangulation has some thickness
// and creates more interior facets.
Vec<int> tmp(numEdge);
for_each_n(
policy, countAt(0), numEdge,
[&tmp, &edgeAdded, &edges, &half2Edge, this](const int i) {
tmp[i] = edgeAdded[i];
const TmpEdge edge = edges[i];
int hIdx = edge.halfedgeIdx;
if (IsMarkedInsideQuad(hIdx)) return;
const int thisAdded = tmp[i];
auto Added = [&edgeAdded, &half2Edge, thisAdded, this](int hIdx) {
int longest = 0;
int total = 0;
for (int j : {0, 1, 2}) {
const int added = edgeAdded[half2Edge[hIdx]];
longest = la::max(longest, added);
total += added;
hIdx = NextHalfedge(hIdx);
if (IsMarkedInsideQuad(hIdx)) {
// No extra on quads
longest = 0;
total = 1;
break;
}
}
const int minExtra = longest * 0.2 + 1;
const int extra = 2 * longest + minExtra - total;
return extra > 0 ? (extra * (longest - thisAdded)) / longest : 0;
};
tmp[i] += la::max(Added(hIdx), Added(halfedge_[hIdx].pairedHalfedge));
});
edgeAdded.swap(tmp);
}
Vec<int> edgeOffset(numEdge);
exclusive_scan(edgeAdded.begin(), edgeAdded.end(), edgeOffset.begin(),
numVert);
Vec<Barycentric> vertBary(edgeOffset.back() + edgeAdded.back());
const int totalEdgeAdded = vertBary.size() - numVert;
FillRetainedVerts(vertBary);
for_each_n(policy, countAt(0), numEdge,
[&vertBary, &edges, &edgeAdded, &edgeOffset, this](const int i) {
const int n = edgeAdded[i];
const int offset = edgeOffset[i];
const BaryIndices indices = GetIndices(edges[i].halfedgeIdx);
if (indices.tri < 0) {
return; // inside quad
}
const double frac = 1.0 / (n + 1);
for (int i = 0; i < n; ++i) {
vec4 uvw(0.0);
uvw[indices.end4] = (i + 1) * frac;
uvw[indices.start4] = 1 - uvw[indices.end4];
vertBary[offset + i].uvw = uvw;
vertBary[offset + i].tri = indices.tri;
}
});
std::vector<Partition> subTris(numTri);
for_each_n(policy, countAt(0), numTri,
[this, &subTris, &half2Edge, &edgeAdded, &faceHalfedges](int tri) {
const ivec4 halfedges = faceHalfedges[tri];
ivec4 divisions(0);
for (const int i : {0, 1, 2, 3}) {
if (halfedges[i] >= 0) {
divisions[i] = edgeAdded[half2Edge[halfedges[i]]] + 1;
}
}
subTris[tri] = Partition::GetPartition(divisions);
});
Vec<int> triOffset(numTri);
auto numSubTris =
TransformIterator(subTris.begin(), [](const Partition& part) {
return static_cast<int>(part.triVert.size());
});
manifold::exclusive_scan(numSubTris, numSubTris + numTri, triOffset.begin(),
0);
Vec<int> interiorOffset(numTri);
auto numInterior =
TransformIterator(subTris.begin(), [](const Partition& part) {
return static_cast<int>(part.NumInterior());
});
manifold::exclusive_scan(numInterior, numInterior + numTri,
interiorOffset.begin(),
static_cast<int>(vertBary.size()));
Vec<ivec3> triVerts(triOffset.back() + subTris.back().triVert.size());
vertBary.resize(interiorOffset.back() + subTris.back().NumInterior());
Vec<TriRef> triRef(triVerts.size());
for_each_n(
policy, countAt(0), numTri,
[this, &triVerts, &triRef, &vertBary, &subTris, &edgeOffset, &half2Edge,
&triOffset, &interiorOffset, &faceHalfedges](int tri) {
const ivec4 halfedges = faceHalfedges[tri];
if (halfedges[0] < 0) return;
ivec4 tri3;
ivec4 edgeOffsets;
bvec4 edgeFwd(false);
for (const int i : {0, 1, 2, 3}) {
if (halfedges[i] < 0) {
tri3[i] = -1;
continue;
}
const Halfedge& halfedge = halfedge_[halfedges[i]];
tri3[i] = halfedge.startVert;
edgeOffsets[i] = edgeOffset[half2Edge[halfedges[i]]];
edgeFwd[i] = halfedge.IsForward();
}
Vec<ivec3> newTris = subTris[tri].Reindex(tri3, edgeOffsets, edgeFwd,
interiorOffset[tri]);
copy(newTris.begin(), newTris.end(), triVerts.begin() + triOffset[tri]);
auto start = triRef.begin() + triOffset[tri];
fill(start, start + newTris.size(), meshRelation_.triRef[tri]);
const ivec4 idx = subTris[tri].idx;
const ivec4 vIdx = halfedges[3] >= 0 || idx[1] == Next3(idx[0])
? idx
: ivec4(idx[2], idx[0], idx[1], idx[3]);
ivec4 rIdx;
for (const int i : {0, 1, 2, 3}) {
rIdx[vIdx[i]] = i;
}
const auto& subBary = subTris[tri].vertBary;
transform(subBary.begin() + subTris[tri].InteriorOffset(),
subBary.end(), vertBary.begin() + interiorOffset[tri],
[tri, rIdx](vec4 bary) {
return Barycentric({tri,
{bary[rIdx[0]], bary[rIdx[1]],
bary[rIdx[2]], bary[rIdx[3]]}});
});
});
meshRelation_.triRef = triRef;
Vec<vec3> newVertPos(vertBary.size());
for_each_n(policy, countAt(0), vertBary.size(),
[&newVertPos, &vertBary, &faceHalfedges, this](const int vert) {
const Barycentric bary = vertBary[vert];
const ivec4 halfedges = faceHalfedges[bary.tri];
if (halfedges[3] < 0) {
mat3 triPos;
for (const int i : {0, 1, 2}) {
triPos[i] = vertPos_[halfedge_[halfedges[i]].startVert];
}
newVertPos[vert] = triPos * vec3(bary.uvw);
} else {
mat3x4 quadPos;
for (const int i : {0, 1, 2, 3}) {
quadPos[i] = vertPos_[halfedge_[halfedges[i]].startVert];
}
newVertPos[vert] = quadPos * bary.uvw;
}
});
vertPos_ = newVertPos;
faceNormal_.resize(0);
if (meshRelation_.numProp > 0) {
const int numPropVert = NumPropVert();
const int addedVerts = NumVert() - numVert;
const int propOffset = numPropVert - numVert;
Vec<double> prop(meshRelation_.numProp *
(numPropVert + addedVerts + totalEdgeAdded));
// copy retained prop verts
copy(meshRelation_.properties.begin(), meshRelation_.properties.end(),
prop.begin());
// copy interior prop verts and forward edge prop verts
for_each_n(
policy, countAt(0), addedVerts,
[&prop, &vertBary, &faceHalfedges, numVert, numPropVert,
this](const int i) {
const int vert = numPropVert + i;
const Barycentric bary = vertBary[numVert + i];
const ivec4 halfedges = faceHalfedges[bary.tri];
auto& rel = meshRelation_;
for (int p = 0; p < rel.numProp; ++p) {
if (halfedges[3] < 0) {
vec3 triProp;
for (const int i : {0, 1, 2}) {
triProp[i] = rel.properties[rel.triProperties[bary.tri][i] *
rel.numProp +
p];
}
prop[vert * rel.numProp + p] = la::dot(triProp, vec3(bary.uvw));
} else {
vec4 quadProp;
for (const int i : {0, 1, 2, 3}) {
const int tri = halfedges[i] / 3;
const int j = halfedges[i] % 3;
quadProp[i] =
rel.properties[rel.triProperties[tri][j] * rel.numProp + p];
}
prop[vert * rel.numProp + p] = la::dot(quadProp, bary.uvw);
}
}
});
// copy backward edge prop verts
for_each_n(policy, countAt(0), numEdge,
[this, &prop, &edges, &edgeAdded, &edgeOffset, propOffset,
addedVerts](const int i) {
const int n = edgeAdded[i];
const int offset = edgeOffset[i] + propOffset + addedVerts;
auto& rel = meshRelation_;
const double frac = 1.0 / (n + 1);
const int halfedgeIdx =
halfedge_[edges[i].halfedgeIdx].pairedHalfedge;
const int v0 = halfedgeIdx % 3;
const int tri = halfedgeIdx / 3;
const int prop0 = rel.triProperties[tri][v0];
const int prop1 = rel.triProperties[tri][Next3(v0)];
for (int i = 0; i < n; ++i) {
for (int p = 0; p < rel.numProp; ++p) {
prop[(offset + i) * rel.numProp + p] =
la::lerp(rel.properties[prop0 * rel.numProp + p],
rel.properties[prop1 * rel.numProp + p],
(i + 1) * frac);
}
}
});
Vec<ivec3> triProp(triVerts.size());
for_each_n(policy, countAt(0), numTri,
[this, &triProp, &subTris, &edgeOffset, &half2Edge, &triOffset,
&interiorOffset, &faceHalfedges, propOffset,
addedVerts](const int tri) {
const ivec4 halfedges = faceHalfedges[tri];
if (halfedges[0] < 0) return;
auto& rel = meshRelation_;
ivec4 tri3;
ivec4 edgeOffsets;
bvec4 edgeFwd(true);
for (const int i : {0, 1, 2, 3}) {
if (halfedges[i] < 0) {
tri3[i] = -1;
continue;
}
const int thisTri = halfedges[i] / 3;
const int j = halfedges[i] % 3;
const Halfedge& halfedge = halfedge_[halfedges[i]];
tri3[i] = rel.triProperties[thisTri][j];
edgeOffsets[i] = edgeOffset[half2Edge[halfedges[i]]];
if (!halfedge.IsForward()) {
const int pairTri = halfedge.pairedHalfedge / 3;
const int k = halfedge.pairedHalfedge % 3;
if (rel.triProperties[pairTri][k] !=
rel.triProperties[thisTri][Next3(j)] ||
rel.triProperties[pairTri][Next3(k)] !=
rel.triProperties[thisTri][j]) {
edgeOffsets[i] += addedVerts;
} else {
edgeFwd[i] = false;
}
}
}
Vec<ivec3> newTris = subTris[tri].Reindex(
tri3, edgeOffsets + propOffset, edgeFwd,
interiorOffset[tri] + propOffset);
copy(newTris.begin(), newTris.end(),
triProp.begin() + triOffset[tri]);
});
meshRelation_.properties = prop;
meshRelation_.triProperties = triProp;
}
CreateHalfedges(triVerts);
return vertBary;
}
} // namespace manifold