godot-module-template/engine/modules/jolt_physics/joints/jolt_slider_joint_3d.cpp

543 lines
23 KiB
C++

/**************************************************************************/
/* jolt_slider_joint_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "jolt_slider_joint_3d.h"
#include "../misc/jolt_type_conversions.h"
#include "../objects/jolt_body_3d.h"
#include "../spaces/jolt_space_3d.h"
#include "Jolt/Physics/Constraints/FixedConstraint.h"
#include "Jolt/Physics/Constraints/SliderConstraint.h"
namespace {
constexpr double DEFAULT_LINEAR_LIMIT_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_LIMIT_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_LIMIT_DAMPING = 1.0;
constexpr double DEFAULT_LINEAR_MOTION_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_MOTION_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_MOTION_DAMPING = 0.0;
constexpr double DEFAULT_LINEAR_ORTHO_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_ORTHO_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_ORTHO_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_LIMIT_UPPER = 0.0;
constexpr double DEFAULT_ANGULAR_LIMIT_LOWER = 0.0;
constexpr double DEFAULT_ANGULAR_LIMIT_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_LIMIT_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_LIMIT_DAMPING = 0.0;
constexpr double DEFAULT_ANGULAR_MOTION_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_MOTION_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_MOTION_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_ORTHO_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_ORTHO_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_ORTHO_DAMPING = 1.0;
} // namespace
JPH::Constraint *JoltSliderJoint3D::_build_slider(JPH::Body *p_jolt_body_a, JPH::Body *p_jolt_body_b, const Transform3D &p_shifted_ref_a, const Transform3D &p_shifted_ref_b, float p_limit) const {
JPH::SliderConstraintSettings constraint_settings;
constraint_settings.mSpace = JPH::EConstraintSpace::LocalToBodyCOM;
constraint_settings.mAutoDetectPoint = false;
constraint_settings.mPoint1 = to_jolt_r(p_shifted_ref_a.origin);
constraint_settings.mSliderAxis1 = to_jolt(p_shifted_ref_a.basis.get_column(Vector3::AXIS_X));
constraint_settings.mNormalAxis1 = to_jolt(p_shifted_ref_a.basis.get_column(Vector3::AXIS_Z));
constraint_settings.mPoint2 = to_jolt_r(p_shifted_ref_b.origin);
constraint_settings.mSliderAxis2 = to_jolt(p_shifted_ref_b.basis.get_column(Vector3::AXIS_X));
constraint_settings.mNormalAxis2 = to_jolt(p_shifted_ref_b.basis.get_column(Vector3::AXIS_Z));
constraint_settings.mLimitsMin = -p_limit;
constraint_settings.mLimitsMax = p_limit;
if (limit_spring_enabled) {
constraint_settings.mLimitsSpringSettings.mFrequency = (float)limit_spring_frequency;
constraint_settings.mLimitsSpringSettings.mDamping = (float)limit_spring_damping;
}
if (p_jolt_body_a == nullptr) {
return constraint_settings.Create(JPH::Body::sFixedToWorld, *p_jolt_body_b);
} else if (p_jolt_body_b == nullptr) {
return constraint_settings.Create(*p_jolt_body_a, JPH::Body::sFixedToWorld);
} else {
return constraint_settings.Create(*p_jolt_body_a, *p_jolt_body_b);
}
}
JPH::Constraint *JoltSliderJoint3D::_build_fixed(JPH::Body *p_jolt_body_a, JPH::Body *p_jolt_body_b, const Transform3D &p_shifted_ref_a, const Transform3D &p_shifted_ref_b) const {
JPH::FixedConstraintSettings constraint_settings;
constraint_settings.mSpace = JPH::EConstraintSpace::LocalToBodyCOM;
constraint_settings.mAutoDetectPoint = false;
constraint_settings.mPoint1 = to_jolt_r(p_shifted_ref_a.origin);
constraint_settings.mAxisX1 = to_jolt(p_shifted_ref_a.basis.get_column(Vector3::AXIS_X));
constraint_settings.mAxisY1 = to_jolt(p_shifted_ref_a.basis.get_column(Vector3::AXIS_Y));
constraint_settings.mPoint2 = to_jolt_r(p_shifted_ref_b.origin);
constraint_settings.mAxisX2 = to_jolt(p_shifted_ref_b.basis.get_column(Vector3::AXIS_X));
constraint_settings.mAxisY2 = to_jolt(p_shifted_ref_b.basis.get_column(Vector3::AXIS_Y));
if (p_jolt_body_a == nullptr) {
return constraint_settings.Create(JPH::Body::sFixedToWorld, *p_jolt_body_b);
} else if (p_jolt_body_b == nullptr) {
return constraint_settings.Create(*p_jolt_body_a, JPH::Body::sFixedToWorld);
} else {
return constraint_settings.Create(*p_jolt_body_a, *p_jolt_body_b);
}
}
void JoltSliderJoint3D::_update_motor_state() {
if (unlikely(_is_fixed())) {
return;
}
if (JPH::SliderConstraint *constraint = static_cast<JPH::SliderConstraint *>(jolt_ref.GetPtr())) {
constraint->SetMotorState(motor_enabled ? JPH::EMotorState::Velocity : JPH::EMotorState::Off);
}
}
void JoltSliderJoint3D::_update_motor_velocity() {
if (unlikely(_is_fixed())) {
return;
}
if (JPH::SliderConstraint *constraint = static_cast<JPH::SliderConstraint *>(jolt_ref.GetPtr())) {
constraint->SetTargetVelocity((float)motor_target_speed);
}
}
void JoltSliderJoint3D::_update_motor_limit() {
if (unlikely(_is_fixed())) {
return;
}
if (JPH::SliderConstraint *constraint = static_cast<JPH::SliderConstraint *>(jolt_ref.GetPtr())) {
JPH::MotorSettings &motor_settings = constraint->GetMotorSettings();
motor_settings.mMinForceLimit = (float)-motor_max_force;
motor_settings.mMaxForceLimit = (float)motor_max_force;
}
}
void JoltSliderJoint3D::_limits_changed() {
rebuild();
_wake_up_bodies();
}
void JoltSliderJoint3D::_limit_spring_changed() {
rebuild();
_wake_up_bodies();
}
void JoltSliderJoint3D::_motor_state_changed() {
_update_motor_state();
_wake_up_bodies();
}
void JoltSliderJoint3D::_motor_speed_changed() {
_update_motor_velocity();
_wake_up_bodies();
}
void JoltSliderJoint3D::_motor_limit_changed() {
_update_motor_limit();
_wake_up_bodies();
}
JoltSliderJoint3D::JoltSliderJoint3D(const JoltJoint3D &p_old_joint, JoltBody3D *p_body_a, JoltBody3D *p_body_b, const Transform3D &p_local_ref_a, const Transform3D &p_local_ref_b) :
JoltJoint3D(p_old_joint, p_body_a, p_body_b, p_local_ref_a, p_local_ref_b) {
rebuild();
}
double JoltSliderJoint3D::get_param(PhysicsServer3D::SliderJointParam p_param) const {
switch (p_param) {
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: {
return limit_upper;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: {
return limit_lower;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: {
return DEFAULT_LINEAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: {
return DEFAULT_LINEAR_LIMIT_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: {
return DEFAULT_LINEAR_LIMIT_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: {
return DEFAULT_LINEAR_MOTION_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: {
return DEFAULT_LINEAR_MOTION_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: {
return DEFAULT_LINEAR_MOTION_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: {
return DEFAULT_LINEAR_ORTHO_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: {
return DEFAULT_LINEAR_ORTHO_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: {
return DEFAULT_LINEAR_ORTHO_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: {
return DEFAULT_ANGULAR_LIMIT_UPPER;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: {
return DEFAULT_ANGULAR_LIMIT_LOWER;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: {
return DEFAULT_ANGULAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: {
return DEFAULT_ANGULAR_LIMIT_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: {
return DEFAULT_ANGULAR_LIMIT_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: {
return DEFAULT_ANGULAR_MOTION_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: {
return DEFAULT_ANGULAR_MOTION_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: {
return DEFAULT_ANGULAR_MOTION_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: {
return DEFAULT_ANGULAR_ORTHO_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: {
return DEFAULT_ANGULAR_ORTHO_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: {
return DEFAULT_ANGULAR_ORTHO_DAMPING;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled slider joint parameter: '%d'. This should not happen. Please report this.", p_param));
}
}
}
void JoltSliderJoint3D::set_param(PhysicsServer3D::SliderJointParam p_param, double p_value) {
switch (p_param) {
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: {
limit_upper = p_value;
_limits_changed();
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: {
limit_lower = p_value;
_limits_changed();
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear limit restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear limit damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear motion softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear motion restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear motion damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear ortho softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear ortho restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear ortho damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_UPPER)) {
WARN_PRINT(vformat("Slider joint angular limits are not supported when using Jolt Physics. Any such value will be ignored. Try using Generic6DOFJoint3D instead. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_LOWER)) {
WARN_PRINT(vformat("Slider joint angular limits are not supported when using Jolt Physics. Any such value will be ignored. Try using Generic6DOFJoint3D instead. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular limit restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular limit damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular motion softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular motion restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular motion damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular ortho softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular ortho restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular ortho damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
default: {
ERR_FAIL_MSG(vformat("Unhandled slider joint parameter: '%d'. This should not happen. Please report this.", p_param));
} break;
}
}
double JoltSliderJoint3D::get_jolt_param(JoltParameter p_param) const {
switch (p_param) {
case JoltPhysicsServer3D::SLIDER_JOINT_LIMIT_SPRING_FREQUENCY: {
return limit_spring_frequency;
}
case JoltPhysicsServer3D::SLIDER_JOINT_LIMIT_SPRING_DAMPING: {
return limit_spring_damping;
}
case JoltPhysicsServer3D::SLIDER_JOINT_MOTOR_TARGET_VELOCITY: {
return motor_target_speed;
}
case JoltPhysicsServer3D::SLIDER_JOINT_MOTOR_MAX_FORCE: {
return motor_max_force;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled parameter: '%d'. This should not happen. Please report this.", p_param));
}
}
}
void JoltSliderJoint3D::set_jolt_param(JoltParameter p_param, double p_value) {
switch (p_param) {
case JoltPhysicsServer3D::SLIDER_JOINT_LIMIT_SPRING_FREQUENCY: {
limit_spring_frequency = p_value;
_limit_spring_changed();
} break;
case JoltPhysicsServer3D::SLIDER_JOINT_LIMIT_SPRING_DAMPING: {
limit_spring_damping = p_value;
_limit_spring_changed();
} break;
case JoltPhysicsServer3D::SLIDER_JOINT_MOTOR_TARGET_VELOCITY: {
motor_target_speed = p_value;
_motor_speed_changed();
} break;
case JoltPhysicsServer3D::SLIDER_JOINT_MOTOR_MAX_FORCE: {
motor_max_force = p_value;
_motor_limit_changed();
} break;
default: {
ERR_FAIL_MSG(vformat("Unhandled parameter: '%d'. This should not happen. Please report this.", p_param));
} break;
}
}
bool JoltSliderJoint3D::get_jolt_flag(JoltFlag p_flag) const {
switch (p_flag) {
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_USE_LIMIT: {
return limits_enabled;
}
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_USE_LIMIT_SPRING: {
return limit_spring_enabled;
}
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_ENABLE_MOTOR: {
return motor_enabled;
}
default: {
ERR_FAIL_V_MSG(false, vformat("Unhandled flag: '%d'. This should not happen. Please report this.", p_flag));
}
}
}
void JoltSliderJoint3D::set_jolt_flag(JoltFlag p_flag, bool p_enabled) {
switch (p_flag) {
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_USE_LIMIT: {
limits_enabled = p_enabled;
_limits_changed();
} break;
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_USE_LIMIT_SPRING: {
limit_spring_enabled = p_enabled;
_limit_spring_changed();
} break;
case JoltPhysicsServer3D::SLIDER_JOINT_FLAG_ENABLE_MOTOR: {
motor_enabled = p_enabled;
_motor_state_changed();
} break;
default: {
ERR_FAIL_MSG(vformat("Unhandled flag: '%d'. This should not happen. Please report this.", p_flag));
} break;
}
}
float JoltSliderJoint3D::get_applied_force() const {
ERR_FAIL_NULL_V(jolt_ref, 0.0f);
JoltSpace3D *space = get_space();
ERR_FAIL_NULL_V(space, 0.0f);
const float last_step = space->get_last_step();
if (unlikely(last_step == 0.0f)) {
return 0.0f;
}
if (_is_fixed()) {
JPH::FixedConstraint *constraint = static_cast<JPH::FixedConstraint *>(jolt_ref.GetPtr());
return constraint->GetTotalLambdaPosition().Length() / last_step;
} else {
JPH::SliderConstraint *constraint = static_cast<JPH::SliderConstraint *>(jolt_ref.GetPtr());
const JPH::Vec3 total_lambda = JPH::Vec3(constraint->GetTotalLambdaPosition()[0], constraint->GetTotalLambdaPosition()[1], constraint->GetTotalLambdaPositionLimits() + constraint->GetTotalLambdaMotor());
return total_lambda.Length() / last_step;
}
}
float JoltSliderJoint3D::get_applied_torque() const {
ERR_FAIL_NULL_V(jolt_ref, 0.0f);
JoltSpace3D *space = get_space();
ERR_FAIL_NULL_V(space, 0.0f);
const float last_step = space->get_last_step();
if (unlikely(last_step == 0.0f)) {
return 0.0f;
}
if (_is_fixed()) {
JPH::FixedConstraint *constraint = static_cast<JPH::FixedConstraint *>(jolt_ref.GetPtr());
return constraint->GetTotalLambdaRotation().Length() / last_step;
} else {
JPH::SliderConstraint *constraint = static_cast<JPH::SliderConstraint *>(jolt_ref.GetPtr());
return constraint->GetTotalLambdaRotation().Length() / last_step;
}
}
void JoltSliderJoint3D::rebuild() {
destroy();
JoltSpace3D *space = get_space();
if (space == nullptr) {
return;
}
const JPH::BodyID body_ids[2] = {
body_a != nullptr ? body_a->get_jolt_id() : JPH::BodyID(),
body_b != nullptr ? body_b->get_jolt_id() : JPH::BodyID()
};
const JoltWritableBodies3D jolt_bodies = space->write_bodies(body_ids, 2);
JPH::Body *jolt_body_a = static_cast<JPH::Body *>(jolt_bodies[0]);
JPH::Body *jolt_body_b = static_cast<JPH::Body *>(jolt_bodies[1]);
ERR_FAIL_COND(jolt_body_a == nullptr && jolt_body_b == nullptr);
float ref_shift = 0.0f;
float limit = FLT_MAX;
if (limits_enabled && limit_lower <= limit_upper) {
const double limit_midpoint = (limit_lower + limit_upper) / 2.0f;
ref_shift = float(-limit_midpoint);
limit = float(limit_upper - limit_midpoint);
}
Transform3D shifted_ref_a;
Transform3D shifted_ref_b;
_shift_reference_frames(Vector3(ref_shift, 0.0f, 0.0f), Vector3(), shifted_ref_a, shifted_ref_b);
if (_is_fixed()) {
jolt_ref = _build_fixed(jolt_body_a, jolt_body_b, shifted_ref_a, shifted_ref_b);
} else {
jolt_ref = _build_slider(jolt_body_a, jolt_body_b, shifted_ref_a, shifted_ref_b, limit);
}
space->add_joint(this);
_update_enabled();
_update_iterations();
_update_motor_state();
_update_motor_velocity();
_update_motor_limit();
}