godot-module-template/engine/modules/navigation/2d/nav_mesh_generator_2d.cpp

526 lines
21 KiB
C++

/**************************************************************************/
/* nav_mesh_generator_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef CLIPPER2_ENABLED
#include "nav_mesh_generator_2d.h"
#include "core/config/project_settings.h"
#include "scene/resources/2d/navigation_mesh_source_geometry_data_2d.h"
#include "scene/resources/2d/navigation_polygon.h"
#include "thirdparty/clipper2/include/clipper2/clipper.h"
#include "thirdparty/misc/polypartition.h"
NavMeshGenerator2D *NavMeshGenerator2D::singleton = nullptr;
Mutex NavMeshGenerator2D::baking_navmesh_mutex;
Mutex NavMeshGenerator2D::generator_task_mutex;
RWLock NavMeshGenerator2D::generator_parsers_rwlock;
bool NavMeshGenerator2D::use_threads = true;
bool NavMeshGenerator2D::baking_use_multiple_threads = true;
bool NavMeshGenerator2D::baking_use_high_priority_threads = true;
HashSet<Ref<NavigationPolygon>> NavMeshGenerator2D::baking_navmeshes;
HashMap<WorkerThreadPool::TaskID, NavMeshGenerator2D::NavMeshGeneratorTask2D *> NavMeshGenerator2D::generator_tasks;
LocalVector<NavMeshGeometryParser2D *> NavMeshGenerator2D::generator_parsers;
NavMeshGenerator2D *NavMeshGenerator2D::get_singleton() {
return singleton;
}
NavMeshGenerator2D::NavMeshGenerator2D() {
ERR_FAIL_COND(singleton != nullptr);
singleton = this;
baking_use_multiple_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_multiple_threads");
baking_use_high_priority_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_high_priority_threads");
// Using threads might cause problems on certain exports or with the Editor on certain devices.
// This is the main switch to turn threaded navmesh baking off should the need arise.
use_threads = baking_use_multiple_threads;
}
NavMeshGenerator2D::~NavMeshGenerator2D() {
cleanup();
}
void NavMeshGenerator2D::sync() {
if (generator_tasks.size() == 0) {
return;
}
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
{
MutexLock generator_task_lock(generator_task_mutex);
LocalVector<WorkerThreadPool::TaskID> finished_task_ids;
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
if (WorkerThreadPool::get_singleton()->is_task_completed(E.key)) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
finished_task_ids.push_back(E.key);
NavMeshGeneratorTask2D *generator_task = E.value;
DEV_ASSERT(generator_task->status == NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED);
baking_navmeshes.erase(generator_task->navigation_mesh);
if (generator_task->callback.is_valid()) {
generator_emit_callback(generator_task->callback);
}
memdelete(generator_task);
}
}
for (WorkerThreadPool::TaskID finished_task_id : finished_task_ids) {
generator_tasks.erase(finished_task_id);
}
}
}
void NavMeshGenerator2D::cleanup() {
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
{
MutexLock generator_task_lock(generator_task_mutex);
baking_navmeshes.clear();
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
NavMeshGeneratorTask2D *generator_task = E.value;
memdelete(generator_task);
}
generator_tasks.clear();
generator_parsers_rwlock.write_lock();
generator_parsers.clear();
generator_parsers_rwlock.write_unlock();
}
}
void NavMeshGenerator2D::finish() {
cleanup();
}
void NavMeshGenerator2D::parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node, const Callable &p_callback) {
ERR_FAIL_COND(!Thread::is_main_thread());
ERR_FAIL_COND(p_navigation_mesh.is_null());
ERR_FAIL_NULL(p_root_node);
ERR_FAIL_COND(!p_root_node->is_inside_tree());
ERR_FAIL_COND(p_source_geometry_data.is_null());
generator_parse_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_root_node);
if (p_callback.is_valid()) {
generator_emit_callback(p_callback);
}
}
void NavMeshGenerator2D::bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
ERR_FAIL_COND(p_navigation_mesh.is_null());
ERR_FAIL_COND(p_source_geometry_data.is_null());
if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
p_navigation_mesh->clear();
if (p_callback.is_valid()) {
generator_emit_callback(p_callback);
}
return;
}
if (is_baking(p_navigation_mesh)) {
ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
}
baking_navmesh_mutex.lock();
baking_navmeshes.insert(p_navigation_mesh);
baking_navmesh_mutex.unlock();
generator_bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data);
baking_navmesh_mutex.lock();
baking_navmeshes.erase(p_navigation_mesh);
baking_navmesh_mutex.unlock();
if (p_callback.is_valid()) {
generator_emit_callback(p_callback);
}
}
void NavMeshGenerator2D::bake_from_source_geometry_data_async(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
ERR_FAIL_COND(p_navigation_mesh.is_null());
ERR_FAIL_COND(p_source_geometry_data.is_null());
if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
p_navigation_mesh->clear();
if (p_callback.is_valid()) {
generator_emit_callback(p_callback);
}
return;
}
if (!use_threads) {
bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_callback);
return;
}
if (is_baking(p_navigation_mesh)) {
ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
}
baking_navmesh_mutex.lock();
baking_navmeshes.insert(p_navigation_mesh);
baking_navmesh_mutex.unlock();
MutexLock generator_task_lock(generator_task_mutex);
NavMeshGeneratorTask2D *generator_task = memnew(NavMeshGeneratorTask2D);
generator_task->navigation_mesh = p_navigation_mesh;
generator_task->source_geometry_data = p_source_geometry_data;
generator_task->callback = p_callback;
generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_STARTED;
generator_task->thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMeshGenerator2D::generator_thread_bake, generator_task, NavMeshGenerator2D::baking_use_high_priority_threads, "NavMeshGeneratorBake2D");
generator_tasks.insert(generator_task->thread_task_id, generator_task);
}
bool NavMeshGenerator2D::is_baking(Ref<NavigationPolygon> p_navigation_polygon) {
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
return baking_navmeshes.has(p_navigation_polygon);
}
void NavMeshGenerator2D::generator_thread_bake(void *p_arg) {
NavMeshGeneratorTask2D *generator_task = static_cast<NavMeshGeneratorTask2D *>(p_arg);
generator_bake_from_source_geometry_data(generator_task->navigation_mesh, generator_task->source_geometry_data);
generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED;
}
void NavMeshGenerator2D::generator_parse_geometry_node(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node, bool p_recurse_children) {
generator_parsers_rwlock.read_lock();
for (const NavMeshGeometryParser2D *parser : generator_parsers) {
if (!parser->callback.is_valid()) {
continue;
}
parser->callback.call(p_navigation_mesh, p_source_geometry_data, p_node);
}
generator_parsers_rwlock.read_unlock();
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, p_node->get_child(i), p_recurse_children);
}
}
}
void NavMeshGenerator2D::set_generator_parsers(LocalVector<NavMeshGeometryParser2D *> p_parsers) {
RWLockWrite write_lock(generator_parsers_rwlock);
generator_parsers = p_parsers;
}
void NavMeshGenerator2D::generator_parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node) {
List<Node *> parse_nodes;
if (p_navigation_mesh->get_source_geometry_mode() == NavigationPolygon::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
parse_nodes.push_back(p_root_node);
} else {
p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_geometry_group_name(), &parse_nodes);
}
Transform2D root_node_transform = Transform2D();
if (Object::cast_to<Node2D>(p_root_node)) {
root_node_transform = Object::cast_to<Node2D>(p_root_node)->get_global_transform().affine_inverse();
}
p_source_geometry_data->clear();
p_source_geometry_data->root_node_transform = root_node_transform;
bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationPolygon::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
for (Node *E : parse_nodes) {
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, E, recurse_children);
}
}
static void generator_recursive_process_polytree_items(List<TPPLPoly> &p_tppl_in_polygon, const Clipper2Lib::PolyPathD *p_polypath_item) {
using namespace Clipper2Lib;
TPPLPoly tp;
int size = p_polypath_item->Polygon().size();
tp.Init(size);
int j = 0;
for (const PointD &polypath_point : p_polypath_item->Polygon()) {
tp[j] = Vector2(static_cast<real_t>(polypath_point.x), static_cast<real_t>(polypath_point.y));
++j;
}
if (p_polypath_item->IsHole()) {
tp.SetOrientation(TPPL_ORIENTATION_CW);
tp.SetHole(true);
} else {
tp.SetOrientation(TPPL_ORIENTATION_CCW);
}
p_tppl_in_polygon.push_back(tp);
for (size_t i = 0; i < p_polypath_item->Count(); i++) {
const PolyPathD *polypath_item = p_polypath_item->Child(i);
generator_recursive_process_polytree_items(p_tppl_in_polygon, polypath_item);
}
}
bool NavMeshGenerator2D::generator_emit_callback(const Callable &p_callback) {
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
Callable::CallError ce;
Variant result;
p_callback.callp(nullptr, 0, result, ce);
return ce.error == Callable::CallError::CALL_OK;
}
void NavMeshGenerator2D::generator_bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data) {
if (p_navigation_mesh.is_null() || p_source_geometry_data.is_null()) {
return;
}
using namespace Clipper2Lib;
PathsD traversable_polygon_paths;
PathsD obstruction_polygon_paths;
bool empty_projected_obstructions = true;
{
RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
const Vector<Vector<Vector2>> &traversable_outlines = p_source_geometry_data->traversable_outlines;
int outline_count = p_navigation_mesh->get_outline_count();
if (outline_count == 0 && (!p_source_geometry_data->has_data() || (traversable_outlines.is_empty()))) {
return;
}
const Vector<Vector<Vector2>> &obstruction_outlines = p_source_geometry_data->obstruction_outlines;
const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
traversable_polygon_paths.reserve(outline_count + traversable_outlines.size());
obstruction_polygon_paths.reserve(obstruction_outlines.size());
for (int i = 0; i < outline_count; i++) {
const Vector<Vector2> &traversable_outline = p_navigation_mesh->get_outline(i);
PathD subject_path;
subject_path.reserve(traversable_outline.size());
for (const Vector2 &traversable_point : traversable_outline) {
subject_path.emplace_back(traversable_point.x, traversable_point.y);
}
traversable_polygon_paths.push_back(std::move(subject_path));
}
for (const Vector<Vector2> &traversable_outline : traversable_outlines) {
PathD subject_path;
subject_path.reserve(traversable_outline.size());
for (const Vector2 &traversable_point : traversable_outline) {
subject_path.emplace_back(traversable_point.x, traversable_point.y);
}
traversable_polygon_paths.push_back(std::move(subject_path));
}
empty_projected_obstructions = projected_obstructions.is_empty();
if (!empty_projected_obstructions) {
for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
if (projected_obstruction.carve) {
continue;
}
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
continue;
}
PathD clip_path;
clip_path.reserve(projected_obstruction.vertices.size() / 2);
for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
}
if (!IsPositive(clip_path)) {
std::reverse(clip_path.begin(), clip_path.end());
}
obstruction_polygon_paths.push_back(std::move(clip_path));
}
}
for (const Vector<Vector2> &obstruction_outline : obstruction_outlines) {
PathD clip_path;
clip_path.reserve(obstruction_outline.size());
for (const Vector2 &obstruction_point : obstruction_outline) {
clip_path.emplace_back(obstruction_point.x, obstruction_point.y);
}
obstruction_polygon_paths.push_back(std::move(clip_path));
}
}
Rect2 baking_rect = p_navigation_mesh->get_baking_rect();
if (baking_rect.has_area()) {
Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x;
const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y;
const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x;
const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y;
RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
traversable_polygon_paths = RectClip(clipper_rect, traversable_polygon_paths);
obstruction_polygon_paths = RectClip(clipper_rect, obstruction_polygon_paths);
}
// first merge all traversable polygons according to user specified fill rule
PathsD dummy_clip_path;
traversable_polygon_paths = Union(traversable_polygon_paths, dummy_clip_path, FillRule::NonZero);
// merge all obstruction polygons, don't allow holes for what is considered "solid" 2D geometry
obstruction_polygon_paths = Union(obstruction_polygon_paths, dummy_clip_path, FillRule::NonZero);
PathsD path_solution = Difference(traversable_polygon_paths, obstruction_polygon_paths, FillRule::NonZero);
real_t agent_radius_offset = p_navigation_mesh->get_agent_radius();
if (agent_radius_offset > 0.0) {
path_solution = InflatePaths(path_solution, -agent_radius_offset, JoinType::Miter, EndType::Polygon);
}
// Apply obstructions that are not affected by agent radius, the ones with carve enabled.
if (!empty_projected_obstructions) {
RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
obstruction_polygon_paths.resize(0);
for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
if (!projected_obstruction.carve) {
continue;
}
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
continue;
}
PathD clip_path;
clip_path.reserve(projected_obstruction.vertices.size() / 2);
for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
}
if (!IsPositive(clip_path)) {
std::reverse(clip_path.begin(), clip_path.end());
}
obstruction_polygon_paths.push_back(std::move(clip_path));
}
if (obstruction_polygon_paths.size() > 0) {
path_solution = Difference(path_solution, obstruction_polygon_paths, FillRule::NonZero);
}
}
//path_solution = RamerDouglasPeucker(path_solution, 0.025); //
real_t border_size = p_navigation_mesh->get_border_size();
if (baking_rect.has_area() && border_size > 0.0) {
Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x + border_size;
const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y + border_size;
const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x - border_size;
const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y - border_size;
RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
path_solution = RectClip(clipper_rect, path_solution);
}
if (path_solution.size() == 0) {
p_navigation_mesh->clear();
return;
}
ClipType clipper_cliptype = ClipType::Union;
List<TPPLPoly> tppl_in_polygon, tppl_out_polygon;
PolyTreeD polytree;
ClipperD clipper_D;
clipper_D.AddSubject(path_solution);
clipper_D.Execute(clipper_cliptype, FillRule::NonZero, polytree);
for (size_t i = 0; i < polytree.Count(); i++) {
const PolyPathD *polypath_item = polytree[i];
generator_recursive_process_polytree_items(tppl_in_polygon, polypath_item);
}
TPPLPartition tpart;
NavigationPolygon::SamplePartitionType sample_partition_type = p_navigation_mesh->get_sample_partition_type();
switch (sample_partition_type) {
case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_CONVEX_PARTITION:
if (tpart.ConvexPartition_HM(&tppl_in_polygon, &tppl_out_polygon) == 0) {
ERR_PRINT("NavigationPolygon polygon convex partition failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
p_navigation_mesh->set_vertices(Vector<Vector2>());
p_navigation_mesh->clear_polygons();
return;
}
break;
case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_TRIANGULATE:
if (tpart.Triangulate_EC(&tppl_in_polygon, &tppl_out_polygon) == 0) {
ERR_PRINT("NavigationPolygon polygon triangulation failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
p_navigation_mesh->set_vertices(Vector<Vector2>());
p_navigation_mesh->clear_polygons();
return;
}
break;
default: {
ERR_PRINT("NavigationPolygon polygon partitioning failed. Unrecognized partition type.");
p_navigation_mesh->set_vertices(Vector<Vector2>());
p_navigation_mesh->clear_polygons();
return;
}
}
Vector<Vector2> new_vertices;
Vector<Vector<int>> new_polygons;
HashMap<Vector2, int> points;
for (List<TPPLPoly>::Element *I = tppl_out_polygon.front(); I; I = I->next()) {
TPPLPoly &tp = I->get();
Vector<int> new_polygon;
for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
HashMap<Vector2, int>::Iterator E = points.find(tp[i]);
if (!E) {
E = points.insert(tp[i], new_vertices.size());
new_vertices.push_back(tp[i]);
}
new_polygon.push_back(E->value);
}
new_polygons.push_back(new_polygon);
}
p_navigation_mesh->set_data(new_vertices, new_polygons);
}
#endif // CLIPPER2_ENABLED