godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/CapsuleShape.cpp

439 lines
15 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/CapsuleShape.h>
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/CollidePointResult.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
#include <Jolt/Geometry/RayCapsule.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(CapsuleShapeSettings)
{
JPH_ADD_BASE_CLASS(CapsuleShapeSettings, ConvexShapeSettings)
JPH_ADD_ATTRIBUTE(CapsuleShapeSettings, mRadius)
JPH_ADD_ATTRIBUTE(CapsuleShapeSettings, mHalfHeightOfCylinder)
}
static const int cCapsuleDetailLevel = 2;
static const StaticArray<Vec3, 192> sCapsuleTopTriangles = []() {
StaticArray<Vec3, 192> verts;
GetTrianglesContextVertexList::sCreateHalfUnitSphereTop(verts, cCapsuleDetailLevel);
return verts;
}();
static const StaticArray<Vec3, 96> sCapsuleMiddleTriangles = []() {
StaticArray<Vec3, 96> verts;
GetTrianglesContextVertexList::sCreateUnitOpenCylinder(verts, cCapsuleDetailLevel);
return verts;
}();
static const StaticArray<Vec3, 192> sCapsuleBottomTriangles = []() {
StaticArray<Vec3, 192> verts;
GetTrianglesContextVertexList::sCreateHalfUnitSphereBottom(verts, cCapsuleDetailLevel);
return verts;
}();
ShapeSettings::ShapeResult CapsuleShapeSettings::Create() const
{
if (mCachedResult.IsEmpty())
{
Ref<Shape> shape;
if (IsValid() && IsSphere())
{
// If the capsule has no height, use a sphere instead
shape = new SphereShape(mRadius, mMaterial);
mCachedResult.Set(shape);
}
else
shape = new CapsuleShape(*this, mCachedResult);
}
return mCachedResult;
}
CapsuleShape::CapsuleShape(const CapsuleShapeSettings &inSettings, ShapeResult &outResult) :
ConvexShape(EShapeSubType::Capsule, inSettings, outResult),
mRadius(inSettings.mRadius),
mHalfHeightOfCylinder(inSettings.mHalfHeightOfCylinder)
{
if (inSettings.mHalfHeightOfCylinder <= 0.0f)
{
outResult.SetError("Invalid height");
return;
}
if (inSettings.mRadius <= 0.0f)
{
outResult.SetError("Invalid radius");
return;
}
outResult.Set(this);
}
class CapsuleShape::CapsuleNoConvex final : public Support
{
public:
CapsuleNoConvex(Vec3Arg inHalfHeightOfCylinder, float inConvexRadius) :
mHalfHeightOfCylinder(inHalfHeightOfCylinder),
mConvexRadius(inConvexRadius)
{
static_assert(sizeof(CapsuleNoConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(CapsuleNoConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
if (inDirection.GetY() > 0)
return mHalfHeightOfCylinder;
else
return -mHalfHeightOfCylinder;
}
virtual float GetConvexRadius() const override
{
return mConvexRadius;
}
private:
Vec3 mHalfHeightOfCylinder;
float mConvexRadius;
};
class CapsuleShape::CapsuleWithConvex final : public Support
{
public:
CapsuleWithConvex(Vec3Arg inHalfHeightOfCylinder, float inRadius) :
mHalfHeightOfCylinder(inHalfHeightOfCylinder),
mRadius(inRadius)
{
static_assert(sizeof(CapsuleWithConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(CapsuleWithConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
float len = inDirection.Length();
Vec3 radius = len > 0.0f? inDirection * (mRadius / len) : Vec3::sZero();
if (inDirection.GetY() > 0)
return radius + mHalfHeightOfCylinder;
else
return radius - mHalfHeightOfCylinder;
}
virtual float GetConvexRadius() const override
{
return 0.0f;
}
private:
Vec3 mHalfHeightOfCylinder;
float mRadius;
};
const ConvexShape::Support *CapsuleShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
// Get scaled capsule
Vec3 abs_scale = inScale.Abs();
float scale = abs_scale.GetX();
Vec3 scaled_half_height_of_cylinder = Vec3(0, scale * mHalfHeightOfCylinder, 0);
float scaled_radius = scale * mRadius;
switch (inMode)
{
case ESupportMode::IncludeConvexRadius:
return new (&inBuffer) CapsuleWithConvex(scaled_half_height_of_cylinder, scaled_radius);
case ESupportMode::ExcludeConvexRadius:
case ESupportMode::Default:
return new (&inBuffer) CapsuleNoConvex(scaled_half_height_of_cylinder, scaled_radius);
}
JPH_ASSERT(false);
return nullptr;
}
void CapsuleShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
JPH_ASSERT(IsValidScale(inScale));
// Get direction in horizontal plane
Vec3 direction = inDirection;
direction.SetComponent(1, 0.0f);
// Check zero vector, in this case we're hitting from top/bottom so there's no supporting face
float len = direction.Length();
if (len == 0.0f)
return;
// Get scaled capsule
Vec3 abs_scale = inScale.Abs();
float scale = abs_scale.GetX();
Vec3 scaled_half_height_of_cylinder = Vec3(0, scale * mHalfHeightOfCylinder, 0);
float scaled_radius = scale * mRadius;
// Get support point for top and bottom sphere in the opposite of 'direction' (including convex radius)
Vec3 support = (scaled_radius / len) * direction;
Vec3 support_top = scaled_half_height_of_cylinder - support;
Vec3 support_bottom = -scaled_half_height_of_cylinder - support;
// Get projection on inDirection
// Note that inDirection is not normalized, so we need to divide by inDirection.Length() to get the actual projection
// We've multiplied both sides of the if below with inDirection.Length()
float proj_top = support_top.Dot(inDirection);
float proj_bottom = support_bottom.Dot(inDirection);
// If projection is roughly equal then return line, otherwise we return nothing as there's only 1 point
if (abs(proj_top - proj_bottom) < cCapsuleProjectionSlop * inDirection.Length())
{
outVertices.push_back(inCenterOfMassTransform * support_top);
outVertices.push_back(inCenterOfMassTransform * support_bottom);
}
}
MassProperties CapsuleShape::GetMassProperties() const
{
MassProperties p;
float density = GetDensity();
// Calculate inertia and mass according to:
// https://www.gamedev.net/resources/_/technical/math-and-physics/capsule-inertia-tensor-r3856
// Note that there is an error in eq 14, H^2/2 should be H^2/4 in Ixx and Izz, eq 12 does contain the correct value
float radius_sq = Square(mRadius);
float height = 2.0f * mHalfHeightOfCylinder;
float cylinder_mass = JPH_PI * height * radius_sq * density;
float hemisphere_mass = (2.0f * JPH_PI / 3.0f) * radius_sq * mRadius * density;
// From cylinder
float height_sq = Square(height);
float inertia_y = radius_sq * cylinder_mass * 0.5f;
float inertia_xz = inertia_y * 0.5f + cylinder_mass * height_sq / 12.0f;
// From hemispheres
float temp = hemisphere_mass * 4.0f * radius_sq / 5.0f;
inertia_y += temp;
inertia_xz += temp + hemisphere_mass * (0.5f * height_sq + (3.0f / 4.0f) * height * mRadius);
// Mass is cylinder + hemispheres
p.mMass = cylinder_mass + hemisphere_mass * 2.0f;
// Set inertia
p.mInertia = Mat44::sScale(Vec3(inertia_xz, inertia_y, inertia_xz));
return p;
}
Vec3 CapsuleShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
if (inLocalSurfacePosition.GetY() > mHalfHeightOfCylinder)
return (inLocalSurfacePosition - Vec3(0, mHalfHeightOfCylinder, 0)).Normalized();
else if (inLocalSurfacePosition.GetY() < -mHalfHeightOfCylinder)
return (inLocalSurfacePosition - Vec3(0, -mHalfHeightOfCylinder, 0)).Normalized();
else
return Vec3(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ()).NormalizedOr(Vec3::sAxisX());
}
AABox CapsuleShape::GetLocalBounds() const
{
Vec3 extent = Vec3::sReplicate(mRadius) + Vec3(0, mHalfHeightOfCylinder, 0);
return AABox(-extent, extent);
}
AABox CapsuleShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
Vec3 abs_scale = inScale.Abs();
float scale = abs_scale.GetX();
Vec3 extent = Vec3::sReplicate(scale * mRadius);
Vec3 height = Vec3(0, scale * mHalfHeightOfCylinder, 0);
Vec3 p1 = inCenterOfMassTransform * -height;
Vec3 p2 = inCenterOfMassTransform * height;
return AABox(Vec3::sMin(p1, p2) - extent, Vec3::sMax(p1, p2) + extent);
}
#ifdef JPH_DEBUG_RENDERER
void CapsuleShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
{
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
inRenderer->DrawCapsule(inCenterOfMassTransform * Mat44::sScale(inScale.Abs().GetX()), mHalfHeightOfCylinder, mRadius, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
}
#endif // JPH_DEBUG_RENDERER
bool CapsuleShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
// Test ray against capsule
float fraction = RayCapsule(inRay.mOrigin, inRay.mDirection, mHalfHeightOfCylinder, mRadius);
if (fraction < ioHit.mFraction)
{
ioHit.mFraction = fraction;
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
return true;
}
return false;
}
void CapsuleShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
float radius_sq = Square(mRadius);
// Get vertical distance to the top/bottom sphere centers
float delta_y = abs(inPoint.GetY()) - mHalfHeightOfCylinder;
// Get distance in horizontal plane
float xz_sq = Square(inPoint.GetX()) + Square(inPoint.GetZ());
// Check if the point is in one of the two spheres
bool in_sphere = xz_sq + Square(delta_y) <= radius_sq;
// Check if the point is in the cylinder in the middle
bool in_cylinder = delta_y <= 0.0f && xz_sq <= radius_sq;
if (in_sphere || in_cylinder)
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
}
void CapsuleShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
{
JPH_ASSERT(IsValidScale(inScale));
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
// Get scaled capsule
float scale = abs(inScale.GetX());
float half_height_of_cylinder = scale * mHalfHeightOfCylinder;
float radius = scale * mRadius;
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
if (v.GetInvMass() > 0.0f)
{
// Calculate penetration
Vec3 local_pos = inverse_transform * v.GetPosition();
if (abs(local_pos.GetY()) <= half_height_of_cylinder)
{
// Near cylinder
Vec3 normal = local_pos;
normal.SetY(0.0f);
float normal_length = normal.Length();
float penetration = radius - normal_length;
if (v.UpdatePenetration(penetration))
{
// Calculate contact point and normal
normal = normal_length > 0.0f? normal / normal_length : Vec3::sAxisX();
Vec3 point = radius * normal;
// Store collision
v.SetCollision(Plane::sFromPointAndNormal(point, normal).GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
}
}
else
{
// Near cap
Vec3 center = Vec3(0, Sign(local_pos.GetY()) * half_height_of_cylinder, 0);
Vec3 delta = local_pos - center;
float distance = delta.Length();
float penetration = radius - distance;
if (v.UpdatePenetration(penetration))
{
// Calculate contact point and normal
Vec3 normal = delta / distance;
Vec3 point = center + radius * normal;
// Store collision
v.SetCollision(Plane::sFromPointAndNormal(point, normal).GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
}
}
}
}
void CapsuleShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
Vec3 abs_scale = inScale.Abs();
float scale = abs_scale.GetX();
GetTrianglesContextMultiVertexList *context = new (&ioContext) GetTrianglesContextMultiVertexList(false, GetMaterial());
Mat44 world_matrix = Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(scale);
Mat44 top_matrix = world_matrix * Mat44(Vec4(mRadius, 0, 0, 0), Vec4(0, mRadius, 0, 0), Vec4(0, 0, mRadius, 0), Vec4(0, mHalfHeightOfCylinder, 0, 1));
context->AddPart(top_matrix, sCapsuleTopTriangles.data(), sCapsuleTopTriangles.size());
Mat44 middle_matrix = world_matrix * Mat44::sScale(Vec3(mRadius, mHalfHeightOfCylinder, mRadius));
context->AddPart(middle_matrix, sCapsuleMiddleTriangles.data(), sCapsuleMiddleTriangles.size());
Mat44 bottom_matrix = world_matrix * Mat44(Vec4(mRadius, 0, 0, 0), Vec4(0, mRadius, 0, 0), Vec4(0, 0, mRadius, 0), Vec4(0, -mHalfHeightOfCylinder, 0, 1));
context->AddPart(bottom_matrix, sCapsuleBottomTriangles.data(), sCapsuleBottomTriangles.size());
}
int CapsuleShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
{
return ((GetTrianglesContextMultiVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials);
}
void CapsuleShape::SaveBinaryState(StreamOut &inStream) const
{
ConvexShape::SaveBinaryState(inStream);
inStream.Write(mRadius);
inStream.Write(mHalfHeightOfCylinder);
}
void CapsuleShape::RestoreBinaryState(StreamIn &inStream)
{
ConvexShape::RestoreBinaryState(inStream);
inStream.Read(mRadius);
inStream.Read(mHalfHeightOfCylinder);
}
bool CapsuleShape::IsValidScale(Vec3Arg inScale) const
{
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScale(inScale.Abs());
}
Vec3 CapsuleShape::MakeScaleValid(Vec3Arg inScale) const
{
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs());
}
void CapsuleShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Capsule);
f.mConstruct = []() -> Shape * { return new CapsuleShape; };
f.mColor = Color::sGreen;
}
JPH_NAMESPACE_END