// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include JPH_NAMESPACE_BEGIN /// Constrains movement along 3 axis /// /// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.2.1 /// /// Constraint equation (eq 45): /// /// \f[C = p_2 - p_1\f] /// /// Jacobian (transposed) (eq 47): /// /// \f[J^T = \begin{bmatrix}-E & r1x & E & -r2x^T\end{bmatrix} /// = \begin{bmatrix}-E^T \\ r1x^T \\ E^T \\ -r2x^T\end{bmatrix} /// = \begin{bmatrix}-E \\ -r1x \\ E \\ r2x\end{bmatrix}\f] /// /// Used terms (here and below, everything in world space):\n /// p1, p2 = constraint points.\n /// r1 = p1 - x1.\n /// r2 = p2 - x2.\n /// r1x = 3x3 matrix for which r1x v = r1 x v (cross product).\n /// x1, x2 = center of mass for the bodies.\n /// v = [v1, w1, v2, w2].\n /// v1, v2 = linear velocity of body 1 and 2.\n /// w1, w2 = angular velocity of body 1 and 2.\n /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n /// b = velocity bias.\n /// \f$\beta\f$ = baumgarte constant.\n /// E = identity matrix. class PointConstraintPart { JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const { // Apply impulse if delta is not zero if (inLambda != Vec3::sZero()) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if (ioBody1.IsDynamic()) { MotionProperties *mp1 = ioBody1.GetMotionProperties(); mp1->SubLinearVelocityStep(mp1->GetInverseMass() * inLambda); mp1->SubAngularVelocityStep(mInvI1_R1X * inLambda); } if (ioBody2.IsDynamic()) { MotionProperties *mp2 = ioBody2.GetMotionProperties(); mp2->AddLinearVelocityStep(mp2->GetInverseMass() * inLambda); mp2->AddAngularVelocityStep(mInvI2_R2X * inLambda); } return true; } return false; } public: /// Calculate properties used during the functions below /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inRotation1 The 3x3 rotation matrix for body 1 (translation part is ignored) /// @param inRotation2 The 3x3 rotation matrix for body 2 (translation part is ignored) /// @param inR1 Local space vector from center of mass to constraint point for body 1 /// @param inR2 Local space vector from center of mass to constraint point for body 2 inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2) { // Positions where the point constraint acts on (middle point between center of masses) in world space mR1 = inRotation1.Multiply3x3(inR1); mR2 = inRotation2.Multiply3x3(inR2); // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1 // Using: I^-1 = R * Ibody^-1 * R^T float summed_inv_mass; Mat44 inv_effective_mass; if (inBody1.IsDynamic()) { const MotionProperties *mp1 = inBody1.GetMotionProperties(); Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1); summed_inv_mass = mp1->GetInverseMass(); Mat44 r1x = Mat44::sCrossProduct(mR1); mInvI1_R1X = inv_i1.Multiply3x3(r1x); inv_effective_mass = r1x.Multiply3x3(inv_i1).Multiply3x3RightTransposed(r1x); } else { JPH_IF_DEBUG(mInvI1_R1X = Mat44::sNaN();) summed_inv_mass = 0.0f; inv_effective_mass = Mat44::sZero(); } if (inBody2.IsDynamic()) { const MotionProperties *mp2 = inBody2.GetMotionProperties(); Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2); summed_inv_mass += mp2->GetInverseMass(); Mat44 r2x = Mat44::sCrossProduct(mR2); mInvI2_R2X = inv_i2.Multiply3x3(r2x); inv_effective_mass += r2x.Multiply3x3(inv_i2).Multiply3x3RightTransposed(r2x); } else { JPH_IF_DEBUG(mInvI2_R2X = Mat44::sNaN();) } inv_effective_mass += Mat44::sScale(summed_inv_mass); if (!mEffectiveMass.SetInversed3x3(inv_effective_mass)) Deactivate(); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = Mat44::sZero(); mTotalLambda = Vec3::sZero(); } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass(3, 3) != 0.0f; } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2) { // Calculate lagrange multiplier: // // lambda = -K^-1 (J v + b) Vec3 lambda = mEffectiveMass * (ioBody1.GetLinearVelocity() - mR1.Cross(ioBody1.GetAngularVelocity()) - ioBody2.GetLinearVelocity() + mR2.Cross(ioBody2.GetAngularVelocity())); mTotalLambda += lambda; // Store accumulated lambda return ApplyVelocityStep(ioBody1, ioBody2, lambda); } /// Iteratively update the position constraint. Makes sure C(...) = 0. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inBaumgarte Baumgarte constant (fraction of the error to correct) inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const { Vec3 separation = (Vec3(ioBody2.GetCenterOfMassPosition() - ioBody1.GetCenterOfMassPosition()) + mR2 - mR1); if (separation != Vec3::sZero()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out Vec3 lambda = mEffectiveMass * -inBaumgarte * separation; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) { ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * lambda); ioBody1.SubRotationStep(mInvI1_R1X * lambda); } if (ioBody2.IsDynamic()) { ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * lambda); ioBody2.AddRotationStep(mInvI2_R2X * lambda); } return true; } return false; } /// Return lagrange multiplier Vec3 GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Vec3 mR1; Vec3 mR2; Mat44 mInvI1_R1X; Mat44 mInvI2_R2X; Mat44 mEffectiveMass; Vec3 mTotalLambda { Vec3::sZero() }; }; JPH_NAMESPACE_END