// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include #include #include JPH_NAMESPACE_BEGIN /// Constraint that constrains motion along 1 axis /// /// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.1.1 /// (we're not using the approximation of eq 27 but instead add the U term as in eq 55) /// /// Constraint equation (eq 25): /// /// \f[C = (p_2 - p_1) \cdot n\f] /// /// Jacobian (eq 28): /// /// \f[J = \begin{bmatrix} -n^T & (-(r_1 + u) \times n)^T & n^T & (r_2 \times n)^T \end{bmatrix}\f] /// /// Used terms (here and below, everything in world space):\n /// n = constraint axis (normalized).\n /// p1, p2 = constraint points.\n /// r1 = p1 - x1.\n /// r2 = p2 - x2.\n /// u = x2 + r2 - x1 - r1 = p2 - p1.\n /// x1, x2 = center of mass for the bodies.\n /// v = [v1, w1, v2, w2].\n /// v1, v2 = linear velocity of body 1 and 2.\n /// w1, w2 = angular velocity of body 1 and 2.\n /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n /// b = velocity bias.\n /// \f$\beta\f$ = baumgarte constant. class AxisConstraintPart { /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated template JPH_INLINE bool ApplyVelocityStep(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inLambda) const { // Apply impulse if delta is not zero if (inLambda != 0.0f) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if constexpr (Type1 == EMotionType::Dynamic) { ioMotionProperties1->SubLinearVelocityStep((inLambda * inInvMass1) * inWorldSpaceAxis); ioMotionProperties1->SubAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis)); } if constexpr (Type2 == EMotionType::Dynamic) { ioMotionProperties2->AddLinearVelocityStep((inLambda * inInvMass2) * inWorldSpaceAxis); ioMotionProperties2->AddAngularVelocityStep(inLambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis)); } return true; } return false; } /// Internal helper function to calculate the inverse effective mass template JPH_INLINE float TemplatedCalculateInverseEffectiveMass(float inInvMass1, Mat44Arg inInvI1, Vec3Arg inR1PlusU, float inInvMass2, Mat44Arg inInvI2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis) { JPH_ASSERT(inWorldSpaceAxis.IsNormalized(1.0e-5f)); // Calculate properties used below Vec3 r1_plus_u_x_axis; if constexpr (Type1 != EMotionType::Static) { r1_plus_u_x_axis = inR1PlusU.Cross(inWorldSpaceAxis); r1_plus_u_x_axis.StoreFloat3(&mR1PlusUxAxis); } else { #ifdef JPH_DEBUG Vec3::sNaN().StoreFloat3(&mR1PlusUxAxis); #endif } Vec3 r2_x_axis; if constexpr (Type2 != EMotionType::Static) { r2_x_axis = inR2.Cross(inWorldSpaceAxis); r2_x_axis.StoreFloat3(&mR2xAxis); } else { #ifdef JPH_DEBUG Vec3::sNaN().StoreFloat3(&mR2xAxis); #endif } // Calculate inverse effective mass: K = J M^-1 J^T float inv_effective_mass; if constexpr (Type1 == EMotionType::Dynamic) { Vec3 invi1_r1_plus_u_x_axis = inInvI1.Multiply3x3(r1_plus_u_x_axis); invi1_r1_plus_u_x_axis.StoreFloat3(&mInvI1_R1PlusUxAxis); inv_effective_mass = inInvMass1 + invi1_r1_plus_u_x_axis.Dot(r1_plus_u_x_axis); } else { (void)r1_plus_u_x_axis; // Fix compiler warning: Not using this (it's not calculated either) JPH_IF_DEBUG(Vec3::sNaN().StoreFloat3(&mInvI1_R1PlusUxAxis);) inv_effective_mass = 0.0f; } if constexpr (Type2 == EMotionType::Dynamic) { Vec3 invi2_r2_x_axis = inInvI2.Multiply3x3(r2_x_axis); invi2_r2_x_axis.StoreFloat3(&mInvI2_R2xAxis); inv_effective_mass += inInvMass2 + invi2_r2_x_axis.Dot(r2_x_axis); } else { (void)r2_x_axis; // Fix compiler warning: Not using this (it's not calculated either) JPH_IF_DEBUG(Vec3::sNaN().StoreFloat3(&mInvI2_R2xAxis);) } return inv_effective_mass; } /// Internal helper function to calculate the inverse effective mass JPH_INLINE float CalculateInverseEffectiveMass(const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis) { // Dispatch to the correct templated form switch (inBody1.GetMotionType()) { case EMotionType::Dynamic: { const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked(); float inv_m1 = mp1->GetInverseMass(); Mat44 inv_i1 = inBody1.GetInverseInertia(); switch (inBody2.GetMotionType()) { case EMotionType::Dynamic: return TemplatedCalculateInverseEffectiveMass(inv_m1, inv_i1, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); case EMotionType::Kinematic: return TemplatedCalculateInverseEffectiveMass(inv_m1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis); case EMotionType::Static: return TemplatedCalculateInverseEffectiveMass(inv_m1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis); default: break; } break; } case EMotionType::Kinematic: JPH_ASSERT(inBody2.IsDynamic()); return TemplatedCalculateInverseEffectiveMass(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); case EMotionType::Static: JPH_ASSERT(inBody2.IsDynamic()); return TemplatedCalculateInverseEffectiveMass(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inBody2.GetMotionPropertiesUnchecked()->GetInverseMass(), inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); default: break; } JPH_ASSERT(false); return 0.0f; } /// Internal helper function to calculate the inverse effective mass, version that supports mass scaling JPH_INLINE float CalculateInverseEffectiveMassWithMassOverride(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis) { // Dispatch to the correct templated form switch (inBody1.GetMotionType()) { case EMotionType::Dynamic: { Mat44 inv_i1 = inInvInertiaScale1 * inBody1.GetInverseInertia(); switch (inBody2.GetMotionType()) { case EMotionType::Dynamic: return TemplatedCalculateInverseEffectiveMass(inInvMass1, inv_i1, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); case EMotionType::Kinematic: return TemplatedCalculateInverseEffectiveMass(inInvMass1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis); case EMotionType::Static: return TemplatedCalculateInverseEffectiveMass(inInvMass1, inv_i1, inR1PlusU, 0 /* Will not be used */, Mat44() /* Will not be used */, inR2, inWorldSpaceAxis); default: break; } break; } case EMotionType::Kinematic: JPH_ASSERT(inBody2.IsDynamic()); return TemplatedCalculateInverseEffectiveMass(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); case EMotionType::Static: JPH_ASSERT(inBody2.IsDynamic()); return TemplatedCalculateInverseEffectiveMass(0 /* Will not be used */, Mat44() /* Will not be used */, inR1PlusU, inInvMass2, inInvInertiaScale2 * inBody2.GetInverseInertia(), inR2, inWorldSpaceAxis); default: break; } JPH_ASSERT(false); return 0.0f; } public: /// Templated form of CalculateConstraintProperties with the motion types baked in template JPH_INLINE void TemplatedCalculateConstraintProperties(float inInvMass1, Mat44Arg inInvI1, Vec3Arg inR1PlusU, float inInvMass2, Mat44Arg inInvI2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f) { float inv_effective_mass = TemplatedCalculateInverseEffectiveMass(inInvMass1, inInvI1, inR1PlusU, inInvMass2, inInvI2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else { mEffectiveMass = 1.0f / inv_effective_mass; mSpringPart.CalculateSpringPropertiesWithBias(inBias); } JPH_DET_LOG("TemplatedCalculateConstraintProperties: invM1: " << inInvMass1 << " invI1: " << inInvI1 << " r1PlusU: " << inR1PlusU << " invM2: " << inInvMass2 << " invI2: " << inInvI2 << " r2: " << inR2 << " bias: " << inBias << " r1PlusUxAxis: " << mR1PlusUxAxis << " r2xAxis: " << mR2xAxis << " invI1_R1PlusUxAxis: " << mInvI1_R1PlusUxAxis << " invI2_R2xAxis: " << mInvI2_R2xAxis << " effectiveMass: " << mEffectiveMass << " totalLambda: " << mTotalLambda); } /// Calculate properties used during the functions below /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inR1PlusU See equations above (r1 + u) /// @param inR2 See equations above (r2) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2) /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else { mEffectiveMass = 1.0f / inv_effective_mass; mSpringPart.CalculateSpringPropertiesWithBias(inBias); } } /// Calculate properties used during the functions below, version that supports mass scaling /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic) /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic) /// @param inInvInertiaScale1 Scale factor for the inverse inertia of body 1 /// @param inInvInertiaScale2 Scale factor for the inverse inertia of body 2 /// @param inR1PlusU See equations above (r1 + u) /// @param inR2 See equations above (r2) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2) /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b inline void CalculateConstraintPropertiesWithMassOverride(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, Vec3Arg inR1PlusU, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias = 0.0f) { float inv_effective_mass = CalculateInverseEffectiveMassWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, inR1PlusU, inBody2, inInvMass2, inInvInertiaScale2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else { mEffectiveMass = 1.0f / inv_effective_mass; mSpringPart.CalculateSpringPropertiesWithBias(inBias); } } /// Calculate properties used during the functions below /// @param inDeltaTime Time step /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inR1PlusU See equations above (r1 + u) /// @param inR2 See equations above (r2) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2) /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C). /// @param inFrequency Oscillation frequency (Hz). /// @param inDamping Damping factor (0 = no damping, 1 = critical damping). inline void CalculateConstraintPropertiesWithFrequencyAndDamping(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inFrequency, float inDamping) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inFrequency, inDamping, mEffectiveMass); } /// Calculate properties used during the functions below /// @param inDeltaTime Time step /// @param inBody1 The first body that this constraint is attached to /// @param inBody2 The second body that this constraint is attached to /// @param inR1PlusU See equations above (r1 + u) /// @param inR2 See equations above (r2) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized, pointing from body 1 to 2) /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C). /// @param inStiffness Spring stiffness k. /// @param inDamping Spring damping coefficient c. inline void CalculateConstraintPropertiesWithStiffnessAndDamping(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, float inStiffness, float inDamping) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inStiffness, inDamping, mEffectiveMass); } /// Selects one of the above functions based on the spring settings inline void CalculateConstraintPropertiesWithSettings(float inDeltaTime, const Body &inBody1, Vec3Arg inR1PlusU, const Body &inBody2, Vec3Arg inR2, Vec3Arg inWorldSpaceAxis, float inBias, float inC, const SpringSettings &inSpringSettings) { float inv_effective_mass = CalculateInverseEffectiveMass(inBody1, inR1PlusU, inBody2, inR2, inWorldSpaceAxis); if (inv_effective_mass == 0.0f) Deactivate(); else if (inSpringSettings.mMode == ESpringMode::FrequencyAndDamping) mSpringPart.CalculateSpringPropertiesWithFrequencyAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mFrequency, inSpringSettings.mDamping, mEffectiveMass); else mSpringPart.CalculateSpringPropertiesWithStiffnessAndDamping(inDeltaTime, inv_effective_mass, inBias, inC, inSpringSettings.mStiffness, inSpringSettings.mDamping, mEffectiveMass); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = 0.0f; mTotalLambda = 0.0f; } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass != 0.0f; } /// Templated form of WarmStart with the motion types baked in template inline void TemplatedWarmStart(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, mTotalLambda); } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized) /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inWarmStartImpulseRatio) { EMotionType motion_type1 = ioBody1.GetMotionType(); MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked(); EMotionType motion_type2 = ioBody2.GetMotionType(); MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked(); // Dispatch to the correct templated form // Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies if (motion_type1 == EMotionType::Dynamic) { if (motion_type2 == EMotionType::Dynamic) TemplatedWarmStart(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inWarmStartImpulseRatio); else TemplatedWarmStart(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inWarmStartImpulseRatio); } else { JPH_ASSERT(motion_type2 == EMotionType::Dynamic); TemplatedWarmStart(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inWarmStartImpulseRatio); } } /// Templated form of SolveVelocityConstraint with the motion types baked in, part 1: get the total lambda template JPH_INLINE float TemplatedSolveVelocityConstraintGetTotalLambda(const MotionProperties *ioMotionProperties1, const MotionProperties *ioMotionProperties2, Vec3Arg inWorldSpaceAxis) const { // Calculate jacobian multiplied by linear velocity float jv; if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static) jv = inWorldSpaceAxis.Dot(ioMotionProperties1->GetLinearVelocity() - ioMotionProperties2->GetLinearVelocity()); else if constexpr (Type1 != EMotionType::Static) jv = inWorldSpaceAxis.Dot(ioMotionProperties1->GetLinearVelocity()); else if constexpr (Type2 != EMotionType::Static) jv = inWorldSpaceAxis.Dot(-ioMotionProperties2->GetLinearVelocity()); else JPH_ASSERT(false); // Static vs static is nonsensical! // Calculate jacobian multiplied by angular velocity if constexpr (Type1 != EMotionType::Static) jv += Vec3::sLoadFloat3Unsafe(mR1PlusUxAxis).Dot(ioMotionProperties1->GetAngularVelocity()); if constexpr (Type2 != EMotionType::Static) jv -= Vec3::sLoadFloat3Unsafe(mR2xAxis).Dot(ioMotionProperties2->GetAngularVelocity()); // Lagrange multiplier is: // // lambda = -K^-1 (J v + b) float lambda = mEffectiveMass * (jv - mSpringPart.GetBias(mTotalLambda)); // Return the total accumulated lambda return mTotalLambda + lambda; } /// Templated form of SolveVelocityConstraint with the motion types baked in, part 2: apply new lambda template JPH_INLINE bool TemplatedSolveVelocityConstraintApplyLambda(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inTotalLambda) { float delta_lambda = inTotalLambda - mTotalLambda; // Calculate change in lambda mTotalLambda = inTotalLambda; // Store accumulated impulse return ApplyVelocityStep(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, delta_lambda); } /// Templated form of SolveVelocityConstraint with the motion types baked in template inline bool TemplatedSolveVelocityConstraint(MotionProperties *ioMotionProperties1, float inInvMass1, MotionProperties *ioMotionProperties2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda) { float total_lambda = TemplatedSolveVelocityConstraintGetTotalLambda(ioMotionProperties1, ioMotionProperties2, inWorldSpaceAxis); // Clamp impulse to specified range total_lambda = Clamp(total_lambda, inMinLambda, inMaxLambda); return TemplatedSolveVelocityConstraintApplyLambda(ioMotionProperties1, inInvMass1, ioMotionProperties2, inInvMass2, inWorldSpaceAxis, total_lambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized) /// @param inMinLambda Minimum value of constraint impulse to apply (N s) /// @param inMaxLambda Maximum value of constraint impulse to apply (N s) inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda) { EMotionType motion_type1 = ioBody1.GetMotionType(); MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked(); EMotionType motion_type2 = ioBody2.GetMotionType(); MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked(); // Dispatch to the correct templated form switch (motion_type1) { case EMotionType::Dynamic: switch (motion_type2) { case EMotionType::Dynamic: return TemplatedSolveVelocityConstraint(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Kinematic: return TemplatedSolveVelocityConstraint(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Static: return TemplatedSolveVelocityConstraint(motion_properties1, motion_properties1->GetInverseMass(), motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda); default: JPH_ASSERT(false); break; } break; case EMotionType::Kinematic: JPH_ASSERT(motion_type2 == EMotionType::Dynamic); return TemplatedSolveVelocityConstraint(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Static: JPH_ASSERT(motion_type2 == EMotionType::Dynamic); return TemplatedSolveVelocityConstraint(motion_properties1, 0.0f /* Unused */, motion_properties2, motion_properties2->GetInverseMass(), inWorldSpaceAxis, inMinLambda, inMaxLambda); default: JPH_ASSERT(false); break; } return false; } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic) /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized) /// @param inMinLambda Minimum value of constraint impulse to apply (N s) /// @param inMaxLambda Maximum value of constraint impulse to apply (N s) inline bool SolveVelocityConstraintWithMassOverride(Body &ioBody1, float inInvMass1, Body &ioBody2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inMinLambda, float inMaxLambda) { EMotionType motion_type1 = ioBody1.GetMotionType(); MotionProperties *motion_properties1 = ioBody1.GetMotionPropertiesUnchecked(); EMotionType motion_type2 = ioBody2.GetMotionType(); MotionProperties *motion_properties2 = ioBody2.GetMotionPropertiesUnchecked(); // Dispatch to the correct templated form switch (motion_type1) { case EMotionType::Dynamic: switch (motion_type2) { case EMotionType::Dynamic: return TemplatedSolveVelocityConstraint(motion_properties1, inInvMass1, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Kinematic: return TemplatedSolveVelocityConstraint(motion_properties1, inInvMass1, motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Static: return TemplatedSolveVelocityConstraint(motion_properties1, inInvMass1, motion_properties2, 0.0f /* Unused */, inWorldSpaceAxis, inMinLambda, inMaxLambda); default: JPH_ASSERT(false); break; } break; case EMotionType::Kinematic: JPH_ASSERT(motion_type2 == EMotionType::Dynamic); return TemplatedSolveVelocityConstraint(motion_properties1, 0.0f /* Unused */, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda); case EMotionType::Static: JPH_ASSERT(motion_type2 == EMotionType::Dynamic); return TemplatedSolveVelocityConstraint(motion_properties1, 0.0f /* Unused */, motion_properties2, inInvMass2, inWorldSpaceAxis, inMinLambda, inMaxLambda); default: JPH_ASSERT(false); break; } return false; } /// Iteratively update the position constraint. Makes sure C(...) = 0. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized) /// @param inC Value of the constraint equation (C) /// @param inBaumgarte Baumgarte constant (fraction of the error to correct) inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inWorldSpaceAxis, float inC, float inBaumgarte) const { // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint if (inC != 0.0f && !mSpringPart.IsActive()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out float lambda = -mEffectiveMass * inBaumgarte * inC; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) { ioBody1.SubPositionStep((lambda * ioBody1.GetMotionProperties()->GetInverseMass()) * inWorldSpaceAxis); ioBody1.SubRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis)); } if (ioBody2.IsDynamic()) { ioBody2.AddPositionStep((lambda * ioBody2.GetMotionProperties()->GetInverseMass()) * inWorldSpaceAxis); ioBody2.AddRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis)); } return true; } return false; } /// Iteratively update the position constraint. Makes sure C(...) = 0. /// @param ioBody1 The first body that this constraint is attached to /// @param ioBody2 The second body that this constraint is attached to /// @param inInvMass1 The inverse mass of body 1 (only used when body 1 is dynamic) /// @param inInvMass2 The inverse mass of body 2 (only used when body 2 is dynamic) /// @param inWorldSpaceAxis Axis along which the constraint acts (normalized) /// @param inC Value of the constraint equation (C) /// @param inBaumgarte Baumgarte constant (fraction of the error to correct) inline bool SolvePositionConstraintWithMassOverride(Body &ioBody1, float inInvMass1, Body &ioBody2, float inInvMass2, Vec3Arg inWorldSpaceAxis, float inC, float inBaumgarte) const { // Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint if (inC != 0.0f && !mSpringPart.IsActive()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out float lambda = -mEffectiveMass * inBaumgarte * inC; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) { ioBody1.SubPositionStep((lambda * inInvMass1) * inWorldSpaceAxis); ioBody1.SubRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI1_R1PlusUxAxis)); } if (ioBody2.IsDynamic()) { ioBody2.AddPositionStep((lambda * inInvMass2) * inWorldSpaceAxis); ioBody2.AddRotationStep(lambda * Vec3::sLoadFloat3Unsafe(mInvI2_R2xAxis)); } return true; } return false; } /// Override total lagrange multiplier, can be used to set the initial value for warm starting inline void SetTotalLambda(float inLambda) { mTotalLambda = inLambda; } /// Return lagrange multiplier inline float GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Float3 mR1PlusUxAxis; Float3 mR2xAxis; Float3 mInvI1_R1PlusUxAxis; Float3 mInvI2_R2xAxis; float mEffectiveMass = 0.0f; SpringPart mSpringPart; float mTotalLambda = 0.0f; }; JPH_NAMESPACE_END