/**************************************************************************/ /* nav_mesh_queries_3d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef _3D_DISABLED #include "nav_mesh_queries_3d.h" #include "../nav_base.h" #include "../nav_map.h" #include "nav_region_iteration_3d.h" #include "core/math/geometry_3d.h" #include "servers/navigation/navigation_utilities.h" #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a))) bool NavMeshQueries3D::emit_callback(const Callable &p_callback) { ERR_FAIL_COND_V(!p_callback.is_valid(), false); Callable::CallError ce; Variant result; p_callback.callp(nullptr, 0, result, ce); return ce.error == Callable::CallError::CALL_OK; } Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) { const LocalVector ®ion_polygons = p_polygons; if (region_polygons.is_empty()) { return Vector3(); } if (p_uniformly) { real_t accumulated_area = 0; RBMap region_area_map; for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) { const gd::Polygon ®ion_polygon = region_polygons[rp_index]; real_t polyon_area = region_polygon.surface_area; if (polyon_area == 0.0) { continue; } region_area_map[accumulated_area] = rp_index; accumulated_area += polyon_area; } if (region_area_map.is_empty() || accumulated_area == 0) { // All polygons have no real surface / no area. return Vector3(); } real_t region_area_map_pos = Math::random(real_t(0), accumulated_area); RBMap::Iterator region_E = region_area_map.find_closest(region_area_map_pos); ERR_FAIL_COND_V(!region_E, Vector3()); uint32_t rrp_polygon_index = region_E->value; ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3()); const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index]; real_t accumulated_polygon_area = 0; RBMap polygon_area_map; for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) { real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area(); if (face_area == 0.0) { continue; } polygon_area_map[accumulated_polygon_area] = rpp_index; accumulated_polygon_area += face_area; } if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) { // All faces have no real surface / no area. return Vector3(); } real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area); RBMap::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos); ERR_FAIL_COND_V(!polygon_E, Vector3()); uint32_t rrp_face_index = polygon_E->value; ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3()); const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos); Vector3 face_random_position = face.get_random_point_inside(); return face_random_position; } else { uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1); const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index]; uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1); const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos); Vector3 face_random_position = face.get_random_point_inside(); return face_random_position; } } void NavMeshQueries3D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask3D &p_query_task, const Vector3 &p_point, const gd::Polygon *p_point_polygon) { if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) { p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->get_type()); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) { p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->get_self()); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) { p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->get_owner_id()); } p_query_task.path_points.push_back(p_point); } void NavMeshQueries3D::map_query_path(NavMap *map, const Ref &p_query_parameters, Ref p_query_result, const Callable &p_callback) { ERR_FAIL_NULL(map); ERR_FAIL_COND(p_query_parameters.is_null()); ERR_FAIL_COND(p_query_result.is_null()); using namespace NavigationUtilities; NavMeshQueries3D::NavMeshPathQueryTask3D query_task; query_task.start_position = p_query_parameters->get_start_position(); query_task.target_position = p_query_parameters->get_target_position(); query_task.navigation_layers = p_query_parameters->get_navigation_layers(); query_task.callback = p_callback; switch (p_query_parameters->get_pathfinding_algorithm()) { case NavigationPathQueryParameters3D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: { query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR; } break; default: { WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default"); query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR; } break; } switch (p_query_parameters->get_path_postprocessing()) { case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: { query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL; } break; case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: { query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED; } break; case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_NONE: { query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE; } break; default: { WARN_PRINT("No match for used PathPostProcessing - fallback to default"); query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL; } break; } query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags(); query_task.simplify_path = p_query_parameters->get_simplify_path(); query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon(); query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_STARTED; map->query_path(query_task); p_query_result->set_data( query_task.path_points, query_task.path_meta_point_types, query_task.path_meta_point_rids, query_task.path_meta_point_owners); if (query_task.callback.is_valid()) { if (emit_callback(query_task.callback)) { query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_DISPATCHED; } else { query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_FAILED; } } } void NavMeshQueries3D::_query_task_find_start_end_positions(NavMeshPathQueryTask3D &p_query_task, const NavMapIteration &p_map_iteration) { real_t begin_d = FLT_MAX; real_t end_d = FLT_MAX; const LocalVector ®ions = p_map_iteration.region_iterations; for (const NavRegionIteration ®ion : regions) { if (!region.get_enabled()) { continue; } // Find the initial poly and the end poly on this map. for (const gd::Polygon &p : region.get_navmesh_polygons()) { // Only consider the polygon if it in a region with compatible layers. if ((p_query_task.navigation_layers & p.owner->get_navigation_layers()) == 0) { continue; } // For each face check the distance between the origin/destination. for (size_t point_id = 2; point_id < p.points.size(); point_id++) { const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); Vector3 point = face.get_closest_point_to(p_query_task.start_position); real_t distance_to_point = point.distance_to(p_query_task.start_position); if (distance_to_point < begin_d) { begin_d = distance_to_point; p_query_task.begin_polygon = &p; p_query_task.begin_position = point; } point = face.get_closest_point_to(p_query_task.target_position); distance_to_point = point.distance_to(p_query_task.target_position); if (distance_to_point < end_d) { end_d = distance_to_point; p_query_task.end_polygon = &p; p_query_task.end_position = point; } } } } } void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p_query_task) { const Vector3 p_target_position = p_query_task.target_position; const uint32_t p_navigation_layers = p_query_task.navigation_layers; const gd::Polygon *begin_poly = p_query_task.begin_polygon; const gd::Polygon *end_poly = p_query_task.end_polygon; Vector3 begin_point = p_query_task.begin_position; Vector3 end_point = p_query_task.end_position; // Heap of polygons to travel next. gd::Heap &traversable_polys = p_query_task.path_query_slot->traversable_polys; traversable_polys.clear(); LocalVector &navigation_polys = p_query_task.path_query_slot->path_corridor; for (gd::NavigationPoly &polygon : navigation_polys) { polygon.reset(); } // Initialize the matching navigation polygon. gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id]; begin_navigation_poly.poly = begin_poly; begin_navigation_poly.entry = begin_point; begin_navigation_poly.back_navigation_edge_pathway_start = begin_point; begin_navigation_poly.back_navigation_edge_pathway_end = begin_point; begin_navigation_poly.traveled_distance = 0.f; // This is an implementation of the A* algorithm. uint32_t least_cost_id = begin_poly->id; bool found_route = false; const gd::Polygon *reachable_end = nullptr; real_t distance_to_reachable_end = FLT_MAX; bool is_reachable = true; real_t poly_enter_cost = 0.0; while (true) { const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id]; real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost(); // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance. for (const gd::Edge &edge : least_cost_poly.poly->edges) { // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon. for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) { const gd::Edge::Connection &connection = edge.connections[connection_index]; // Only consider the connection to another polygon if this polygon is in a region with compatible layers. const NavBaseIteration *owner = connection.polygon->owner; if ((p_navigation_layers & owner->get_navigation_layers()) != 0) { Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end }; const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway); const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance; // Check if the neighbor polygon has already been processed. gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id]; if (new_traveled_distance < neighbor_poly.traveled_distance) { // Add the polygon to the heap of polygons to traverse next. neighbor_poly.back_navigation_poly_id = least_cost_id; neighbor_poly.back_navigation_edge = connection.edge; neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start; neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end; neighbor_poly.traveled_distance = new_traveled_distance; neighbor_poly.distance_to_destination = new_entry.distance_to(end_point) * owner->get_travel_cost(); neighbor_poly.entry = new_entry; if (neighbor_poly.traversable_poly_index != traversable_polys.INVALID_INDEX) { traversable_polys.shift(neighbor_poly.traversable_poly_index); } else { neighbor_poly.poly = connection.polygon; traversable_polys.push(&neighbor_poly); } } } } } poly_enter_cost = 0; // When the heap of traversable polygons is empty at this point it means the end polygon is // unreachable. if (traversable_polys.is_empty()) { // Thus use the further reachable polygon ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons"); is_reachable = false; if (reachable_end == nullptr) { // The path is not found and there is not a way out. break; } // Set as end point the furthest reachable point. end_poly = reachable_end; real_t end_d = FLT_MAX; for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) { Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos); Vector3 spoint = f.get_closest_point_to(p_target_position); real_t dpoint = spoint.distance_squared_to(p_target_position); if (dpoint < end_d) { end_point = spoint; end_d = dpoint; } } // Search all faces of start polygon as well. bool closest_point_on_start_poly = false; for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) { Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos); Vector3 spoint = f.get_closest_point_to(p_target_position); real_t dpoint = spoint.distance_squared_to(p_target_position); if (dpoint < end_d) { end_point = spoint; end_d = dpoint; closest_point_on_start_poly = true; } } if (closest_point_on_start_poly) { // No point to run PostProcessing when start and end convex polygon is the same. p_query_task.path_clear(); _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly); _query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly); p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED; return; } for (gd::NavigationPoly &nav_poly : navigation_polys) { nav_poly.poly = nullptr; nav_poly.traveled_distance = FLT_MAX; } navigation_polys[begin_poly->id].poly = begin_poly; navigation_polys[begin_poly->id].traveled_distance = 0; least_cost_id = begin_poly->id; reachable_end = nullptr; } else { // Pop the polygon with the lowest travel cost from the heap of traversable polygons. least_cost_id = traversable_polys.pop()->poly->id; // Store the farthest reachable end polygon in case our goal is not reachable. if (is_reachable) { real_t distance = navigation_polys[least_cost_id].entry.distance_squared_to(p_target_position); if (distance_to_reachable_end > distance) { distance_to_reachable_end = distance; reachable_end = navigation_polys[least_cost_id].poly; } } // Check if we reached the end if (navigation_polys[least_cost_id].poly == end_poly) { found_route = true; break; } if (navigation_polys[least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) { poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost(); } } } // We did not find a route but we have both a start polygon and an end polygon at this point. // Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon. if (!found_route) { real_t end_d = FLT_MAX; // Search all faces of the start polygon for the closest point to our target position. for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) { Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos); Vector3 spoint = f.get_closest_point_to(p_target_position); real_t dpoint = spoint.distance_squared_to(p_target_position); if (dpoint < end_d) { end_point = spoint; end_d = dpoint; } } p_query_task.path_clear(); _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly); _query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly); p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED; } else { p_query_task.end_position = end_point; p_query_task.end_polygon = end_poly; p_query_task.begin_position = begin_point; p_query_task.begin_polygon = begin_poly; p_query_task.least_cost_id = least_cost_id; } } void NavMeshQueries3D::query_task_map_iteration_get_path(NavMeshPathQueryTask3D &p_query_task, const NavMapIteration &p_map_iteration) { p_query_task.path_clear(); _query_task_find_start_end_positions(p_query_task, p_map_iteration); // Check for trivial cases. if (!p_query_task.begin_polygon || !p_query_task.end_polygon) { p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED; return; } if (p_query_task.begin_polygon == p_query_task.end_polygon) { p_query_task.path_clear(); _query_task_push_back_point_with_metadata(p_query_task, p_query_task.begin_position, p_query_task.begin_polygon); _query_task_push_back_point_with_metadata(p_query_task, p_query_task.end_position, p_query_task.end_polygon); p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED; return; } _query_task_build_path_corridor(p_query_task); if (p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED || p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED) { return; } // Post-Process path. switch (p_query_task.path_postprocessing) { case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: { _query_task_post_process_corridorfunnel(p_query_task); } break; case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: { _query_task_post_process_edgecentered(p_query_task); } break; case PathPostProcessing::PATH_POSTPROCESSING_NONE: { _query_task_post_process_nopostprocessing(p_query_task); } break; default: { WARN_PRINT("No match for used PathPostProcessing - fallback to default"); _query_task_post_process_corridorfunnel(p_query_task); } break; } p_query_task.path_reverse(); if (p_query_task.simplify_path) { _query_task_simplified_path_points(p_query_task); } #ifdef DEBUG_ENABLED // Ensure post conditions as path meta arrays if used MUST match in array size with the path points. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) { DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size()); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) { DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size()); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) { DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size()); } #endif // DEBUG_ENABLED p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED; } void NavMeshQueries3D::_query_task_simplified_path_points(NavMeshPathQueryTask3D &p_query_task) { if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) { return; } const LocalVector &simplified_path_indices = NavMeshQueries3D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon); uint32_t index_count = simplified_path_indices.size(); { Vector3 *points_ptr = p_query_task.path_points.ptr(); for (uint32_t i = 0; i < index_count; i++) { points_ptr[i] = points_ptr[simplified_path_indices[i]]; } p_query_task.path_points.resize(index_count); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) { int32_t *types_ptr = p_query_task.path_meta_point_types.ptr(); for (uint32_t i = 0; i < index_count; i++) { types_ptr[i] = types_ptr[simplified_path_indices[i]]; } p_query_task.path_meta_point_types.resize(index_count); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) { RID *rids_ptr = p_query_task.path_meta_point_rids.ptr(); for (uint32_t i = 0; i < index_count; i++) { rids_ptr[i] = rids_ptr[simplified_path_indices[i]]; } p_query_task.path_meta_point_rids.resize(index_count); } if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) { int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr(); for (uint32_t i = 0; i < index_count; i++) { owners_ptr[i] = owners_ptr[simplified_path_indices[i]]; } p_query_task.path_meta_point_owners.resize(index_count); } } void NavMeshQueries3D::_query_task_post_process_corridorfunnel(NavMeshPathQueryTask3D &p_query_task) { Vector3 end_point = p_query_task.end_position; const gd::Polygon *end_poly = p_query_task.end_polygon; Vector3 begin_point = p_query_task.begin_position; const gd::Polygon *begin_poly = p_query_task.begin_polygon; uint32_t least_cost_id = p_query_task.least_cost_id; LocalVector &navigation_polys = p_query_task.path_query_slot->path_corridor; Vector3 p_map_up = p_query_task.map_up; // Set the apex poly/point to the end point gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end }; const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway); if (end_point.is_equal_approx(back_edge_closest_point)) { // The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing. // At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon. if (apex_poly->back_navigation_poly_id != -1) { apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id]; } } Vector3 apex_point = end_point; gd::NavigationPoly *left_poly = apex_poly; Vector3 left_portal = apex_point; gd::NavigationPoly *right_poly = apex_poly; Vector3 right_portal = apex_point; gd::NavigationPoly *p = apex_poly; _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly); while (p) { // Set left and right points of the pathway between polygons. Vector3 left = p->back_navigation_edge_pathway_start; Vector3 right = p->back_navigation_edge_pathway_end; if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) { SWAP(left, right); } bool skip = false; if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) { //process if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) { left_poly = p; left_portal = left; } else { _query_task_clip_path(p_query_task, apex_poly, right_portal, right_poly); apex_point = right_portal; p = right_poly; left_poly = p; apex_poly = p; left_portal = apex_point; right_portal = apex_point; _query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly); skip = true; } } if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) { //process if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) { right_poly = p; right_portal = right; } else { _query_task_clip_path(p_query_task, apex_poly, left_portal, left_poly); apex_point = left_portal; p = left_poly; right_poly = p; apex_poly = p; right_portal = apex_point; left_portal = apex_point; _query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly); } } // Go to the previous polygon. if (p->back_navigation_poly_id != -1) { p = &navigation_polys[p->back_navigation_poly_id]; } else { // The end p = nullptr; } } // If the last point is not the begin point, add it to the list. if (p_query_task.path_points[p_query_task.path_points.size() - 1] != begin_point) { _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly); } } void NavMeshQueries3D::_query_task_post_process_edgecentered(NavMeshPathQueryTask3D &p_query_task) { Vector3 end_point = p_query_task.end_position; const gd::Polygon *end_poly = p_query_task.end_polygon; Vector3 begin_point = p_query_task.begin_position; const gd::Polygon *begin_poly = p_query_task.begin_polygon; uint32_t least_cost_id = p_query_task.least_cost_id; LocalVector &navigation_polys = p_query_task.path_query_slot->path_corridor; _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly); // Add mid points int np_id = least_cost_id; while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) { if (navigation_polys[np_id].back_navigation_edge != -1) { int prev = navigation_polys[np_id].back_navigation_edge; int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size(); Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5; _query_task_push_back_point_with_metadata(p_query_task, point, navigation_polys[np_id].poly); } else { _query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly); } np_id = navigation_polys[np_id].back_navigation_poly_id; } _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly); } void NavMeshQueries3D::_query_task_post_process_nopostprocessing(NavMeshPathQueryTask3D &p_query_task) { Vector3 end_point = p_query_task.end_position; const gd::Polygon *end_poly = p_query_task.end_polygon; Vector3 begin_point = p_query_task.begin_position; const gd::Polygon *begin_poly = p_query_task.begin_polygon; uint32_t least_cost_id = p_query_task.least_cost_id; LocalVector &navigation_polys = p_query_task.path_query_slot->path_corridor; _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly); // Add mid points int np_id = least_cost_id; while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) { _query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly); np_id = navigation_polys[np_id].back_navigation_poly_id; } _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly); } Vector3 NavMeshQueries3D::map_iteration_get_closest_point_to_segment(const NavMapIteration &p_map_iteration, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) { bool use_collision = p_use_collision; Vector3 closest_point; real_t closest_point_distance = FLT_MAX; const LocalVector ®ions = p_map_iteration.region_iterations; for (const NavRegionIteration ®ion : regions) { for (const gd::Polygon &polygon : region.get_navmesh_polygons()) { // For each face check the distance to the segment. for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) { const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos); Vector3 intersection_point; if (face.intersects_segment(p_from, p_to, &intersection_point)) { const real_t d = p_from.distance_to(intersection_point); if (!use_collision) { closest_point = intersection_point; use_collision = true; closest_point_distance = d; } else if (closest_point_distance > d) { closest_point = intersection_point; closest_point_distance = d; } } // If segment does not itersect face, check the distance from segment's endpoints. else if (!use_collision) { const Vector3 p_from_closest = face.get_closest_point_to(p_from); const real_t d_p_from = p_from.distance_to(p_from_closest); if (closest_point_distance > d_p_from) { closest_point = p_from_closest; closest_point_distance = d_p_from; } const Vector3 p_to_closest = face.get_closest_point_to(p_to); const real_t d_p_to = p_to.distance_to(p_to_closest); if (closest_point_distance > d_p_to) { closest_point = p_to_closest; closest_point_distance = d_p_to; } } } // Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment. if (!use_collision) { for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) { Vector3 a, b; Geometry3D::get_closest_points_between_segments( p_from, p_to, polygon.points[point_id].pos, polygon.points[(point_id + 1) % polygon.points.size()].pos, a, b); const real_t d = a.distance_to(b); if (d < closest_point_distance) { closest_point_distance = d; closest_point = b; } } } } } return closest_point; } Vector3 NavMeshQueries3D::map_iteration_get_closest_point(const NavMapIteration &p_map_iteration, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point); return cp.point; } Vector3 NavMeshQueries3D::map_iteration_get_closest_point_normal(const NavMapIteration &p_map_iteration, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point); return cp.normal; } RID NavMeshQueries3D::map_iteration_get_closest_point_owner(const NavMapIteration &p_map_iteration, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point); return cp.owner; } gd::ClosestPointQueryResult NavMeshQueries3D::map_iteration_get_closest_point_info(const NavMapIteration &p_map_iteration, const Vector3 &p_point) { gd::ClosestPointQueryResult result; real_t closest_point_distance_squared = FLT_MAX; const LocalVector ®ions = p_map_iteration.region_iterations; for (const NavRegionIteration ®ion : regions) { for (const gd::Polygon &polygon : region.get_navmesh_polygons()) { Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos); Vector3 closest_on_polygon; real_t closest = FLT_MAX; bool inside = true; Vector3 previous = polygon.points[polygon.points.size() - 1].pos; for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) { Vector3 edge = polygon.points[point_id].pos - previous; Vector3 to_point = p_point - previous; Vector3 edge_to_point_pormal = edge.cross(to_point); bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0; // If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge. if (!clockwise) { inside = false; real_t point_projected_on_edge = edge.dot(to_point); real_t edge_square = edge.length_squared(); if (point_projected_on_edge > edge_square) { real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point); if (distance < closest) { closest_on_polygon = polygon.points[point_id].pos; closest = distance; } } else if (point_projected_on_edge < 0.f) { real_t distance = previous.distance_squared_to(p_point); if (distance < closest) { closest_on_polygon = previous; closest = distance; } } else { // If we project on this edge, this will be the closest point. real_t percent = point_projected_on_edge / edge_square; closest_on_polygon = previous + percent * edge; break; } } previous = polygon.points[point_id].pos; } if (inside) { Vector3 plane_normalized = plane_normal.normalized(); real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos); real_t distance_squared = distance * distance; if (distance_squared < closest_point_distance_squared) { closest_point_distance_squared = distance_squared; result.point = p_point - plane_normalized * distance; result.normal = plane_normal; result.owner = polygon.owner->get_self(); if (Math::is_zero_approx(distance)) { break; } } } else { real_t distance = closest_on_polygon.distance_squared_to(p_point); if (distance < closest_point_distance_squared) { closest_point_distance_squared = distance; result.point = closest_on_polygon; result.normal = plane_normal; result.owner = polygon.owner->get_self(); } } } } return result; } Vector3 NavMeshQueries3D::map_iteration_get_random_point(const NavMapIteration &p_map_iteration, uint32_t p_navigation_layers, bool p_uniformly) { if (p_map_iteration.region_iterations.is_empty()) { return Vector3(); } LocalVector accessible_regions; accessible_regions.reserve(p_map_iteration.region_iterations.size()); for (uint32_t i = 0; i < p_map_iteration.region_iterations.size(); i++) { const NavRegionIteration ®ion = p_map_iteration.region_iterations[i]; if (!region.enabled || (p_navigation_layers & region.navigation_layers) == 0) { continue; } accessible_regions.push_back(i); } if (accessible_regions.is_empty()) { // All existing region polygons are disabled. return Vector3(); } if (p_uniformly) { real_t accumulated_region_surface_area = 0; RBMap accessible_regions_area_map; for (uint32_t accessible_region_index = 0; accessible_region_index < accessible_regions.size(); accessible_region_index++) { const NavRegionIteration ®ion = p_map_iteration.region_iterations[accessible_regions[accessible_region_index]]; real_t region_surface_area = region.surface_area; if (region_surface_area == 0.0f) { continue; } accessible_regions_area_map[accumulated_region_surface_area] = accessible_region_index; accumulated_region_surface_area += region_surface_area; } if (accessible_regions_area_map.is_empty() || accumulated_region_surface_area == 0) { // All faces have no real surface / no area. return Vector3(); } real_t random_accessible_regions_area_map = Math::random(real_t(0), accumulated_region_surface_area); RBMap::Iterator E = accessible_regions_area_map.find_closest(random_accessible_regions_area_map); ERR_FAIL_COND_V(!E, Vector3()); uint32_t random_region_index = E->value; ERR_FAIL_UNSIGNED_INDEX_V(random_region_index, accessible_regions.size(), Vector3()); const NavRegionIteration &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]]; return NavMeshQueries3D::polygons_get_random_point(random_region.navmesh_polygons, p_navigation_layers, p_uniformly); } else { uint32_t random_region_index = Math::random(int(0), accessible_regions.size() - 1); const NavRegionIteration &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]]; return NavMeshQueries3D::polygons_get_random_point(random_region.navmesh_polygons, p_navigation_layers, p_uniformly); } } Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) { bool use_collision = p_use_collision; Vector3 closest_point; real_t closest_point_distance = FLT_MAX; for (const gd::Polygon &polygon : p_polygons) { // For each face check the distance to the segment. for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) { const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos); Vector3 intersection_point; if (face.intersects_segment(p_from, p_to, &intersection_point)) { const real_t d = p_from.distance_to(intersection_point); if (!use_collision) { closest_point = intersection_point; use_collision = true; closest_point_distance = d; } else if (closest_point_distance > d) { closest_point = intersection_point; closest_point_distance = d; } } // If segment does not itersect face, check the distance from segment's endpoints. else if (!use_collision) { const Vector3 p_from_closest = face.get_closest_point_to(p_from); const real_t d_p_from = p_from.distance_to(p_from_closest); if (closest_point_distance > d_p_from) { closest_point = p_from_closest; closest_point_distance = d_p_from; } const Vector3 p_to_closest = face.get_closest_point_to(p_to); const real_t d_p_to = p_to.distance_to(p_to_closest); if (closest_point_distance > d_p_to) { closest_point = p_to_closest; closest_point_distance = d_p_to; } } } // Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment. if (!use_collision) { for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) { Vector3 a, b; Geometry3D::get_closest_points_between_segments( p_from, p_to, polygon.points[point_id].pos, polygon.points[(point_id + 1) % polygon.points.size()].pos, a, b); const real_t d = a.distance_to(b); if (d < closest_point_distance) { closest_point_distance = d; closest_point = b; } } } } return closest_point; } Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector &p_polygons, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point); return cp.point; } Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector &p_polygons, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point); return cp.normal; } gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector &p_polygons, const Vector3 &p_point) { gd::ClosestPointQueryResult result; real_t closest_point_distance_squared = FLT_MAX; for (const gd::Polygon &polygon : p_polygons) { Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos); Vector3 closest_on_polygon; real_t closest = FLT_MAX; bool inside = true; Vector3 previous = polygon.points[polygon.points.size() - 1].pos; for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) { Vector3 edge = polygon.points[point_id].pos - previous; Vector3 to_point = p_point - previous; Vector3 edge_to_point_pormal = edge.cross(to_point); bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0; // If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge. if (!clockwise) { inside = false; real_t point_projected_on_edge = edge.dot(to_point); real_t edge_square = edge.length_squared(); if (point_projected_on_edge > edge_square) { real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point); if (distance < closest) { closest_on_polygon = polygon.points[point_id].pos; closest = distance; } } else if (point_projected_on_edge < 0.f) { real_t distance = previous.distance_squared_to(p_point); if (distance < closest) { closest_on_polygon = previous; closest = distance; } } else { // If we project on this edge, this will be the closest point. real_t percent = point_projected_on_edge / edge_square; closest_on_polygon = previous + percent * edge; break; } } previous = polygon.points[point_id].pos; } if (inside) { Vector3 plane_normalized = plane_normal.normalized(); real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos); real_t distance_squared = distance * distance; if (distance_squared < closest_point_distance_squared) { closest_point_distance_squared = distance_squared; result.point = p_point - plane_normalized * distance; result.normal = plane_normal; result.owner = polygon.owner->get_self(); if (Math::is_zero_approx(distance)) { break; } } } else { real_t distance = closest_on_polygon.distance_squared_to(p_point); if (distance < closest_point_distance_squared) { closest_point_distance_squared = distance; result.point = closest_on_polygon; result.normal = plane_normal; result.owner = polygon.owner->get_self(); } } } return result; } RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector &p_polygons, const Vector3 &p_point) { gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point); return cp.owner; } void NavMeshQueries3D::_query_task_clip_path(NavMeshPathQueryTask3D &p_query_task, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) { Vector3 from = p_query_task.path_points[p_query_task.path_points.size() - 1]; const LocalVector &p_navigation_polys = p_query_task.path_query_slot->path_corridor; const Vector3 p_map_up = p_query_task.map_up; if (from.is_equal_approx(p_to_point)) { return; } Plane cut_plane; cut_plane.normal = (from - p_to_point).cross(p_map_up); if (cut_plane.normal == Vector3()) { return; } cut_plane.normal.normalize(); cut_plane.d = cut_plane.normal.dot(from); while (from_poly != p_to_poly) { Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start; Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end; ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1); from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id]; if (!pathway_start.is_equal_approx(pathway_end)) { Vector3 inters; if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) { if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) { _query_task_push_back_point_with_metadata(p_query_task, inters, from_poly->poly); } } } } } LocalVector NavMeshQueries3D::get_simplified_path_indices(const LocalVector &p_path, real_t p_epsilon) { p_epsilon = MAX(0.0, p_epsilon); real_t squared_epsilon = p_epsilon * p_epsilon; LocalVector simplified_path_indices; simplified_path_indices.reserve(p_path.size()); simplified_path_indices.push_back(0); simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, simplified_path_indices); simplified_path_indices.push_back(p_path.size() - 1); return simplified_path_indices; } void NavMeshQueries3D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector &p_points, real_t p_epsilon, LocalVector &r_simplified_path_indices) { Vector3 path_segment[2] = { p_points[p_start_inx], p_points[p_end_inx] }; real_t point_max_distance = 0.0; int point_max_index = 0; for (int i = p_start_inx; i < p_end_inx; i++) { const Vector3 &checked_point = p_points[i]; const Vector3 closest_point = Geometry3D::get_closest_point_to_segment(checked_point, path_segment); real_t distance_squared = closest_point.distance_squared_to(checked_point); if (distance_squared > point_max_distance) { point_max_index = i; point_max_distance = distance_squared; } } if (point_max_distance > p_epsilon) { simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_simplified_path_indices); r_simplified_path_indices.push_back(point_max_index); simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_simplified_path_indices); } } #endif // _3D_DISABLED