// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef JPH_DEBUG_RENDERER #include #endif // JPH_DEBUG_RENDERER JPH_NAMESPACE_BEGIN JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(BoxShapeSettings) { JPH_ADD_BASE_CLASS(BoxShapeSettings, ConvexShapeSettings) JPH_ADD_ATTRIBUTE(BoxShapeSettings, mHalfExtent) JPH_ADD_ATTRIBUTE(BoxShapeSettings, mConvexRadius) } static const Vec3 sUnitBoxTriangles[] = { Vec3(-1, 1, -1), Vec3(-1, 1, 1), Vec3(1, 1, 1), Vec3(-1, 1, -1), Vec3(1, 1, 1), Vec3(1, 1, -1), Vec3(-1, -1, -1), Vec3(1, -1, -1), Vec3(1, -1, 1), Vec3(-1, -1, -1), Vec3(1, -1, 1), Vec3(-1, -1, 1), Vec3(-1, 1, -1), Vec3(-1, -1, -1), Vec3(-1, -1, 1), Vec3(-1, 1, -1), Vec3(-1, -1, 1), Vec3(-1, 1, 1), Vec3(1, 1, 1), Vec3(1, -1, 1), Vec3(1, -1, -1), Vec3(1, 1, 1), Vec3(1, -1, -1), Vec3(1, 1, -1), Vec3(-1, 1, 1), Vec3(-1, -1, 1), Vec3(1, -1, 1), Vec3(-1, 1, 1), Vec3(1, -1, 1), Vec3(1, 1, 1), Vec3(-1, 1, -1), Vec3(1, 1, -1), Vec3(1, -1, -1), Vec3(-1, 1, -1), Vec3(1, -1, -1), Vec3(-1, -1, -1) }; ShapeSettings::ShapeResult BoxShapeSettings::Create() const { if (mCachedResult.IsEmpty()) Ref shape = new BoxShape(*this, mCachedResult); return mCachedResult; } BoxShape::BoxShape(const BoxShapeSettings &inSettings, ShapeResult &outResult) : ConvexShape(EShapeSubType::Box, inSettings, outResult), mHalfExtent(inSettings.mHalfExtent), mConvexRadius(inSettings.mConvexRadius) { // Check convex radius if (inSettings.mConvexRadius < 0.0f || inSettings.mHalfExtent.ReduceMin() < inSettings.mConvexRadius) { outResult.SetError("Invalid convex radius"); return; } // Result is valid outResult.Set(this); } class BoxShape::Box final : public Support { public: Box(const AABox &inBox, float inConvexRadius) : mBox(inBox), mConvexRadius(inConvexRadius) { static_assert(sizeof(Box) <= sizeof(SupportBuffer), "Buffer size too small"); JPH_ASSERT(IsAligned(this, alignof(Box))); } virtual Vec3 GetSupport(Vec3Arg inDirection) const override { return mBox.GetSupport(inDirection); } virtual float GetConvexRadius() const override { return mConvexRadius; } private: AABox mBox; float mConvexRadius; }; const ConvexShape::Support *BoxShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const { // Scale our half extents Vec3 scaled_half_extent = inScale.Abs() * mHalfExtent; switch (inMode) { case ESupportMode::IncludeConvexRadius: case ESupportMode::Default: { // Make box out of our half extents AABox box = AABox(-scaled_half_extent, scaled_half_extent); JPH_ASSERT(box.IsValid()); return new (&inBuffer) Box(box, 0.0f); } case ESupportMode::ExcludeConvexRadius: { // Reduce the box by our convex radius float convex_radius = ScaleHelpers::ScaleConvexRadius(mConvexRadius, inScale); Vec3 convex_radius3 = Vec3::sReplicate(convex_radius); Vec3 reduced_half_extent = scaled_half_extent - convex_radius3; AABox box = AABox(-reduced_half_extent, reduced_half_extent); JPH_ASSERT(box.IsValid()); return new (&inBuffer) Box(box, convex_radius); } } JPH_ASSERT(false); return nullptr; } void BoxShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const { JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID"); Vec3 scaled_half_extent = inScale.Abs() * mHalfExtent; AABox box(-scaled_half_extent, scaled_half_extent); box.GetSupportingFace(inDirection, outVertices); // Transform to world space for (Vec3 &v : outVertices) v = inCenterOfMassTransform * v; } MassProperties BoxShape::GetMassProperties() const { MassProperties p; p.SetMassAndInertiaOfSolidBox(2.0f * mHalfExtent, GetDensity()); return p; } Vec3 BoxShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const { JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID"); // Get component that is closest to the surface of the box int index = (inLocalSurfacePosition.Abs() - mHalfExtent).Abs().GetLowestComponentIndex(); // Calculate normal Vec3 normal = Vec3::sZero(); normal.SetComponent(index, inLocalSurfacePosition[index] > 0.0f? 1.0f : -1.0f); return normal; } #ifdef JPH_DEBUG_RENDERER void BoxShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const { DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid; inRenderer->DrawBox(inCenterOfMassTransform * Mat44::sScale(inScale.Abs()), GetLocalBounds(), inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode); } #endif // JPH_DEBUG_RENDERER bool BoxShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const { // Test hit against box float fraction = max(RayAABox(inRay.mOrigin, RayInvDirection(inRay.mDirection), -mHalfExtent, mHalfExtent), 0.0f); if (fraction < ioHit.mFraction) { ioHit.mFraction = fraction; ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID(); return true; } return false; } void BoxShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const { // Test shape filter if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID())) return; float min_fraction, max_fraction; RayAABox(inRay.mOrigin, RayInvDirection(inRay.mDirection), -mHalfExtent, mHalfExtent, min_fraction, max_fraction); if (min_fraction <= max_fraction // Ray should intersect && max_fraction >= 0.0f // End of ray should be inside box && min_fraction < ioCollector.GetEarlyOutFraction()) // Start of ray should be before early out fraction { // Better hit than the current hit RayCastResult hit; hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext()); hit.mSubShapeID2 = inSubShapeIDCreator.GetID(); // Check front side if (inRayCastSettings.mTreatConvexAsSolid || min_fraction > 0.0f) { hit.mFraction = max(0.0f, min_fraction); ioCollector.AddHit(hit); } // Check back side hit if (inRayCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces && max_fraction < ioCollector.GetEarlyOutFraction()) { hit.mFraction = max_fraction; ioCollector.AddHit(hit); } } } void BoxShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const { // Test shape filter if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID())) return; if (Vec3::sLessOrEqual(inPoint.Abs(), mHalfExtent).TestAllXYZTrue()) ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() }); } void BoxShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const { Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation(); Vec3 half_extent = inScale.Abs() * mHalfExtent; for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v) if (v.GetInvMass() > 0.0f) { // Convert to local space Vec3 local_pos = inverse_transform * v.GetPosition(); // Clamp point to inside box Vec3 clamped_point = Vec3::sMax(Vec3::sMin(local_pos, half_extent), -half_extent); // Test if point was inside if (clamped_point == local_pos) { // Calculate closest distance to surface Vec3 delta = half_extent - local_pos.Abs(); int index = delta.GetLowestComponentIndex(); float penetration = delta[index]; if (v.UpdatePenetration(penetration)) { // Calculate contact point and normal Vec3 possible_normals[] = { Vec3::sAxisX(), Vec3::sAxisY(), Vec3::sAxisZ() }; Vec3 normal = local_pos.GetSign() * possible_normals[index]; Vec3 point = normal * half_extent; // Store collision v.SetCollision(Plane::sFromPointAndNormal(point, normal).GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex); } } else { // Calculate normal Vec3 normal = local_pos - clamped_point; float normal_length = normal.Length(); // Penetration will be negative since we're not penetrating float penetration = -normal_length; if (v.UpdatePenetration(penetration)) { normal /= normal_length; // Store collision v.SetCollision(Plane::sFromPointAndNormal(clamped_point, normal).GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex); } } } } void BoxShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const { new (&ioContext) GetTrianglesContextVertexList(inPositionCOM, inRotation, inScale, Mat44::sScale(mHalfExtent), sUnitBoxTriangles, std::size(sUnitBoxTriangles), GetMaterial()); } int BoxShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const { return ((GetTrianglesContextVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials); } void BoxShape::SaveBinaryState(StreamOut &inStream) const { ConvexShape::SaveBinaryState(inStream); inStream.Write(mHalfExtent); inStream.Write(mConvexRadius); } void BoxShape::RestoreBinaryState(StreamIn &inStream) { ConvexShape::RestoreBinaryState(inStream); inStream.Read(mHalfExtent); inStream.Read(mConvexRadius); } void BoxShape::sRegister() { ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Box); f.mConstruct = []() -> Shape * { return new BoxShape; }; f.mColor = Color::sGreen; } JPH_NAMESPACE_END