#include "collision.h" #include "debug.h" #include "player.h" #include "vmath.h" #include "rigidbody.h" // ===================================================== // Shape overlap test using the separating axis theorem // ===================================================== typedef struct Range {float min; Vector minpoint; float max; Vector maxpoint; } Range; static Range _internal_collision_get_range_on_axis(PhysicsEntity self, Vector axis) { Transform* transform = self.transformable->get_transform(self.data); Shape* shape = self.tc->get_shape(self.data); Vector point = shape_get_point_transformed(shape, 0, *transform); float dot = vdotf(axis, point); Range range = {dot, point, dot, point}; for(size_t point_index = 1; point_index < shape_get_points_count(shape); ++point_index) { point = shape_get_point_transformed(shape, point_index, *transform); dot = vdotf(axis, point); if(dot < range.min) { range.min = dot; range.minpoint = point; } if(dot > range.max) { range.max = dot; range.maxpoint = point; } } return range; } static Vector _internal_collision_overlap_on_axis(PhysicsEntity self, PhysicsEntity other, Vector axis, Vector* out_point) { Range a_range = _internal_collision_get_range_on_axis(self, axis); Range b_range = _internal_collision_get_range_on_axis(other, axis); if(a_range.min <= b_range.max && a_range.min <= b_range.max) { const float overlap_left = a_range.max - b_range.min; const float overlap_right = b_range.min - a_range.max; const float shortest = fminf(overlap_left, overlap_right); *out_point = overlap_right < overlap_left ? a_range.maxpoint : a_range.minpoint; return vmulff(axis, shortest); } else { *out_point = InfinityVector; return ZeroVector; } } static int _internal_collision_get_overlap(PhysicsEntity self, PhysicsEntity other, Collision* out) { // get components used Shape* self_shape = self.tc->get_shape(self.data); Transform* self_transform = self.transformable->get_transform(self.data); // the shortest distance to solve collision found so far Vector shortest_escape = InfinityVector; // the squared length of the shortest escape vector found so far float shortest_sqrmag = INFINITY; // the first index of the points on the edge size_t shortest_escape_edge = 0; // the number of points in the shape of self size_t self_point_count = shape_get_points_count(self_shape); for(size_t point_index = 0; point_index < self_point_count; ++point_index) { // the next point on the line size_t next_index = (point_index + 1) % self_point_count; // get the two points defining the collision edge Vector a = shape_get_point_transformed(self.tc->get_shape(self.data), point_index, *self_transform); Vector b = shape_get_point_transformed(self.tc->get_shape(self.data), next_index, *self_transform); // the direction of the line Vector normal = vperpendicularf(vsubf(b, a)); Vector overlap_point; // the smallest escape vector on this axis Vector escape = _internal_collision_overlap_on_axis(self, other, vnormalizedf(normal), &overlap_point); float sqr_mag = vsqrmagnitudef(escape); if(sqr_mag < shortest_sqrmag) { shortest_sqrmag = sqr_mag; shortest_escape = escape; shortest_escape_edge = point_index; } if(sqr_mag == 0) { out->penetration_vector = InfinityVector; return 0; } } RigidBody* rba = self.tc->get_rigidbody(self.data); RigidBody* rbb = other.tc->get_rigidbody(other.data); const Vector velocity = vsubf(rigidbody_get_velocity(rba), rigidbody_get_velocity(rbb)); const Vector normal = vnormalizedf(shortest_escape); Vector world_point = _internal_collision_get_range_on_axis(self, normal).minpoint; *out = (Collision) { .other = other, .point = inverse_transform_point(rigidbody_get_transform(rba), world_point), .normal = normal, .velocity = velocity, .penetration_vector = shortest_escape, .edge_left = shape_get_point_transformed(self_shape, shortest_escape_edge, *self_transform), .edge_right = shape_get_point_transformed(self_shape, (1 + shortest_escape_edge) % self_point_count, *self_transform), }; return !veqf(shortest_escape, ZeroVector); } static Collision _internal_collision_invert(Collision collision_a, PhysicsEntity a) { Vector world_point = _internal_collision_get_range_on_axis(collision_a.other, collision_a.normal).maxpoint; RigidBody* body = collision_a.other.tc->get_rigidbody(collision_a.other.data); return (Collision){ .other = a, .point = inverse_transform_point(rigidbody_get_transform(body), world_point), .normal = vinvf(collision_a.normal), .velocity = vinvf(collision_a.velocity), .penetration_vector = vinvf(collision_a.penetration_vector), .edge_left = collision_a.edge_left, .edge_right = collision_a.edge_right, }; } int collision_check(PhysicsEntity a, PhysicsEntity b, Collision* out_a, Collision* out_b) { Collision collision_a, collision_b; int collision_a_overlaps = _internal_collision_get_overlap(a, b, &collision_a); int collision_b_overlaps = _internal_collision_get_overlap(b, a, &collision_b); if(!collision_a_overlaps || !collision_b_overlaps) return 0; if(vsqrmagnitudef(collision_a.penetration_vector) > vsqrmagnitudef(collision_b.penetration_vector)) collision_b = _internal_collision_invert(collision_a, a); else collision_a = _internal_collision_invert(collision_b, b); *out_a = collision_a; *out_b = collision_b; return (collision_b_overlaps << 1) | collision_a_overlaps; }